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ABSTRACT
We propose a lightweight framework for data exchange that
is suitable for non-expert and casual users sharing data on
the Web and/or through peer-to-peer systems. Unlike previ-
ous work, we consider a minimalistic data model and schema
formalism that are suitable for describing online data and
propose algorithms for mapping such schemas as well as for
translating the corresponding instances. Also our solution
requires minimal overhead and setup costs (e.g., we consider
data stored in tables, XML or CSV files) comparing to ex-
isting data exchange systems, making it very attractive in
our setting. We report experimental results indicating that
our method works well with real Web data from various do-
mains.
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1. INTRODUCTION
The past few years have witnessed a drastic increase in the
amount of data collections maintained and shared by non-
expert users through easy-to-use services on the Web or
peer-to-peer (P2P) data sharing systems [12, 18]. There are
many such services available today, both on focused topics
(e.g., the Internet Book Database1 and the Recipe Tavern2),
as well as generic services (e.g., GoogleBase3 , FreeBase4,
Kijiji5, craigslits6). We refer to these data as data collec-

1http://www.ibookdb.net
2http://www.recipetavern.com
3http://base.google.com
4http://www.freebase.com
5http://www.kijiji.com
6http://www.craigslist.org
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tions, as opposed to databases, because these collections are
not created nor maintained as traditional databases; for in-
stance, most of them are not kept inside a DBMS. Instead,
these collections are kept in files or in online data sharing
services, whose access interfaces are rudimentary when com-
pared with a declarative query interface. Usually, these col-
lections are represented as CSV (comma-separated-values)
or XML files, while a few Web data sharing services allow
users to store their data in a relational format (e.g., Web
Office7 and DabbleDB8).

One defining characteristic of the data sharing services men-
tioned above is that they allow the users to store their data
organized in any way they wish, while offering a set of pre-
defined (and sometimes customizable) schemas from differ-
ent application domains. This flexibility lowers the entry-
level cost for one to share data, but naturally leads to a myr-
iad of schemas describing very similar application domains,
making it harder for one to integrate them afterwards [15].
Nevertheless, given the abundance of data collections avail-
able, it would be highly desirable to be able to integrate
them in the same easy way with which one can define their
own data collections.

We consider the problem of exchanging data between such
collections, that is, translating data from one source collec-
tion into data that conforms to the schema of a target collec-
tion, in a way that is suitable for non-expert users. To illus-
trate the problem consider the example in Figure 1, showing
data collections about music in XML and CSV formats. No-
tice that they use distinct labels for the same kind of data, as
well as different structure. Moreover, in general, schema in-
formation is implicit, i.e., a carefully designed DTD or XML
Schema may not always be available. Furthermore, often
the input data cannot be fully embedded in the target data
collection; that is, only a part of the input schema can be
matched correctly to the target schema. For instance, con-
sider exchanging data from the collection in Figure 1(b) into
the collection in Figure 1(a). Observe that Artist and Al-
bum match name and title, respectively, while Instrument
and Price have no counterpart in the target collection.

The data exchange problem consists in, given data struc-
tured under a source schema, restructure and translate it to
a target schema [8]. While this problem has attracted con-

7http://www.weboffice.com
8http://dabbledb.com/



(a) XML format.

(b) CSV format.

Figure 1: Example data collections.

siderable attention recently, the bulk of this work considers a
very different setting in which the data are kept in databases
and tools are used to help translating the data from one
source into another. Notice that this approach is completely
unrealistic in the setting we consider here. First of all, non-
expert users do not have the skills nor the resources to set
up databases and use mapping tools for finding the corre-
spondences between them. Also, given the large number of
data collections and the high heterogeneity among them, the
effort invested in using a standard database solution would
be unacceptable. Finally, most of the exchanges in this set-
ting move only small portions of a data collection at a time,
and it is quite possible that two peers may exchange data
once and never again. Therefore, the traditional solution to
the data exchange problem requires considerable investment
and effort to be practical in our setting.

Outline and contributions.In this paper we propose a
lightweight data exchange framework tailored for non-expert
and casual users sharing semi-structured data on the Web or
in P2P systems. More specifically, we discuss a minimalistic
generic hierarchical data model as well as a schema formal-
ism that capture essential features of XML and tabular data
(Section 3), and present the data exchange problem on those
terms. We then discuss our Data Fitting algorithm, which
restructures instances of our data model according to a tar-
get schema, without any user intervention (Section 4). We
present experimental results on real Web data from several
domains showing that our approach is very promising (Sec-
tion 5). Conclusions and future work are given in Section 6.

2. RELATED WORK
The data exchange problem consists in, given data struc-
tured under a source schema, restructure and translate it to
a target schema. Fagin et al. [8] laid down the foundations
of the data exchange problem; in particular, they studied
different semantics for data exchange and their complexity.
Fuxman et al. [9] study the problem in the context of two
peers sharing data; they consider the case when peers specify
what data they are willing to receive from others. Libkin [13]

studies the data exchange problem in the presence of in-
complete information. Arenas and Libkin [1] consider the
exchange of XML data where the source and target schemas
are XML DTDs. These works have laid out the theoretical
underpinning of the data exchange problem, focusing mostly
on complexity results.

There has been considerable work on schema mapping; Rahm
and Bernstein provide a thorough survey [21]. Unlike in the
data exchange scenario, the goal here is finding the actual
mapping from a source schema into a target schema. Cu-
pid [14] and Similarity Flooding [16] exploit schema infor-
mation, including the labels of schema elements, to derive
mappings. Our experiments show that this approach alone
does not work well in our setting. Other methods exploit the
actual data values to derive associations between schema el-
ements [4]. As we show later, combining schema and value
information yields very acceptable results in our setting.

There has been work on actually translating the data once
the schema mapping is found. The Clio tool (see [20] and ref-
erences therein) is a system that generates such mappings in
several languages, converting between XML and relational
data seamlessly. Unlike Clio, which requires considerable
setup investment and user intervention, our solution is tar-
geted to non-expert and casual users who may not have the
expertise nor the time to define and carefully debug map-
pings. Thus, we focus on a simpler data model and con-
straint language than what is handled in Clio and other
similar tools.

3. FRAMEWORK
In this section we discuss the data exchange problem in light
of a simple, generic data model and schema formalism which
are rich enough for the setting we consider in this paper. We
show how to convert XML data into instances of our data
model and vice-versa; we also relate our schema formalism to
Document Type Definitions (DTDs) [3]. We focus on XML
because it is the preferred encoding format for exchanging
data on the Web. Moreover, it is expressive enough to rep-
resent other forms of data as well, such as tabular data (i.e.,
a spreadsheet) and relational data.

3.1 Data Model
We consider a generic tree data model called FDM , with
two kinds of nodes for representing entities and their at-
tributes. Intuitively, entities represent real world objects
while attributes describe those entities. As usual, attributes
can only assume atomic values from a given domain.

An instance of the FDM data model is a labeled tree with
two kinds of nodes for representing entities and attributes,
respectively, and a distinguished entity node called the root
of the instance. Only attribute nodes have a value, which
is a literal of a given domain (i.e., strings, numbers, dates,
etc.). Figure 2 shows a document with the artist entity
Norah Jones, and one of he CDs, Not Too Late, which in
turn has two songs.

Context.The context of an entity e in an instance I is de-
fined by the sequence of entity labels spelled out in the path
from the root of I to e. The context of an attribute is the
same of the entity where that attribute is defined. For exam-
ple, the context of the song entities in Figure 2 is artist.CD.

3.2 FDM Schema Graph
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Figure 2: Example of an entity. Entities are repre-
sented by round rectangles while attributes are tex-
tual nodes stemming out of entities; attribute values
are shown in italics.
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title

name

title
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track genre

Figure 3: An FDM schema. Boxes represent entity
types, while ovals represent attributes. The arrows
indicate the attributes of the entities and the way
they can be nested. Hollow arrows indicate optional
attributes.

We use a simple schema formalism, similar in nature to
DataGuides [11], to describe the attributes of different en-
tities and the ways in which these entities can be nested in
one another. We assume that an entity label and a context
defines a type. That is, we assume that two entities with
the same label appearing in the same context must have the
same attributes.

An FDM schema is a tree G = (V, E, r) in which the cor-
respond to entity types and attribute names; r is an entity
defining the root of V and E is the set of edges between
nodes in E. An edge from entity e1 into entity e2 in a
schema graph indicates that: e2 is a sub-entity of e1; an in-
stance of e1 may be associated with zero or more instances
of e2. Figure 3 shows an FDM schema for the instance in
Figure 2.

Converting DTDs intoFDM schemas.We abstract a DTD
into an FDM schema as follows. Recall that the DTD
graph [23] of a DTD is a graph in which vertices correspond
to element tags in the DTD and an edge x → y is defined iff
the DTD allows elements of tag y to appear in the content
of elements of tag x; moreover, an edge x → y is labeled
with a ?, *, or + if y is optional in x, can occur zero or more
times in x, or at least once in x, respectively. For simplic-
ity, we replace all + edges by * edges. The root of the DTD
graph is the element tag of the root element in the document
(specified by the DOCTYPE clause). Given a DTD graph G,

collection

music

CD

title year

genre

*

?

(a) DTD Graph.

music.CD

collection

title

music.genre

year

(b) FDM Schema.

Figure 4: Example DTD Graph and corresponding
FDM schema.

an FDM schema S is produced as follows. Intuitively, leaf
nodes in G will be mapped into attributes in S, while the
root of G as well as its inner nodes on which the incident
edge is labeled with * are mapped into entities. Inner nodes
in which the incident edge is not labeled with * are inlined;
that is, their labels are used as prefixes of the entities or
attributes that appear below them in G. For instance, the
music node in the DTD graph of Figure 4(a) is inlined in
the FDM Schema (Figure 4(b)). Finally, leaf nodes in G in
which the incident edge is labeled * are modeled as entities
with a homonymous attribute.

More precisely, we create an entity type in S for the root
node of G, and for every node in G in which there is an
incident edge labeled with *. If x is a leaf node in G that
is mapped into an entity e1 in S, we add an attribute to e1

with the same label x. Let x and y are distinct nodes in G
that are mapped into entities e1 and e2, respectively, in S
such that: x is an ancestor of y, and there is no other node
in the path x ; y that is mapped into an entity in S. We
add an edge e1 → e2 to S and we use the labels of the nodes
between x and y as prefixes to the label of e2. Finally, every
leaf node in G that is not mapped yet becomes an attribute
of the entity corresponding to its closest node in G.

Note that FDM schemas are less expressive than XML DTDs
and relational schemas. In particular, our formalism does
not capture recursive DTDs easily. This simplification is in-
tentional. We argue that our framework is expressive enough
to capture the essence of the data exchange problem in our
setting, as those discussed in Section 1.

Converting between XML andFDM. Converting an XML
document into an instance of FDM is straightforward. The
conversion in the opposite direction is also not hard; all one
needs to do is expand the inlined elements accordingly. Note
that converting from XML into FDM and back is a lossy
process, as FDM is not an ordered model. However, if one
has an FDM instance I that conforms to a schema derived
from a DTD D (as discussed above), one can translate I
into a valid document w.r.t. D, by ordering the elements
accordingly.

4. DATA FITTING
We now describe the Data Fitting method for restructuring
an instance of FDM that conforms to a source schema S
into another one that conforms to a target schema T . We
first discuss how to find mappings between a source schema
S and a target schema T , and then move to how to translate
an instance of S according to T .

4.1 Attribute Matching



Figure 5: Combining similarity components: F is
the final similarity between two attributes, C and L
are the content and label similarity scores, respec-
tively. K and V and the keyword-based and value-
based similarity scores.

The first step in mapping schemas is finding correspondences
between their attributes. Let A and B be two attributes
from a source instance IS under schema S and a target in-
stance IT under schema T , respectively. Intuitively, the sim-
ilarity between A and B depends on two components: their
content similarity (C ) and their label similarity (L). The
content similarity estimates to which extent the values in
the domain of A overlap with the values in the domain of
B, based on the actual values present in the source and tar-
get instances. The label similarity estimates how close the
labels (within their context) of A and B are to each other.

We model similarity scores as probabilities and use the for-
mal framework of Bayesian networks [19] to combine them
as follows (see Figure 5; ignore nodes K and V for the
moment.). The final similarity between A and B, denoted
by F , depends on the content and label similarity between
them. Moreover, we assume that C and L influence F
through a disjunctive operator or(·, ·), also known as Noisy-
OR-Gate [19]:

F (A,B) = or(C (A,B),L(A, B))

Informally, by using the disjunctive operator we mean that
either parent node (C and L) is likely to activate F (i.e.,
significantly increase the function’s final score). This dis-
junctive operator is particularly useful when any individual
factor is likely to activate F alone, regardless of other fac-
tors [19]. Formally, the disjuntive operator is defined as
follows:

or(x, y) = 1 − [(1 − x) · (1 − y)]

where x and y are probabilities.

4.1.1 Content similarity
We treat numeric and textual attributes differently when
computing the C score. For numeric attributes, we consider
a simple yet effective approach: we assume that the values in
the target attribute B follow a Gaussian distribution. The
similarity between A and B is defined as the mean value
of the probability density function for each value in A. We
normalize this function by the maximum probability density,
which is reached when a given value is equal to the mean.
Thus, we define the content score for numeric attributes as
follows:

C (A,B) =
1

|A|

X

v∈A

e
−

v−µ

2σ2

where σ and µ are standard deviation and mean, respec-
tively, of the values of B.

Textual attributes, on the other hand, require more work.
As illustrated in Figure 5, the content similarity for textual

data type is computed combining the keyword-based (K)
and value-based (V ) similarity scores, i.e.,

C (A,B) = or(K(A, B), S(A, B))

Keyword-based similarity.The keyword-based similarity
measures the overlap of individual words appearing in the
content of A and B. We take two factors into account: (a)
the proportion of keywords in A that occurs at least once
in values of B, and (b) how likely the keywords in A are to
appear in values of B:

K(A, B) =
1

2

"

X

k∈A∪B

wk(A)

wmax(A)
+ 1 −

Y

k∈A∪B

1 − wk(B)

#

(1)
where wk(A) and wk(B) are the weight of keyword k rel-
ative to attribute A and B, respectively; and wmax(A) =
P

wk(A)∀k ∈ A.

The first component of Equation 1 accounts for factor (a)
and is estimated by the normalized sum of weights of key-
words that occurs in both A and B. The weights are com-
puted by the well-known TF-IDF weighting scheme accord-
ing the distribution of keywords in the attribute A and the
source instance S. Our goal in using the weighting term
wk(A) is to privilege high overlap with keywords that are
rare in S but common in values of A:

wk(A) = tf k(A) · log

„

1 +
NS

att(S, k)

«

,

where tf k(A) is the term-frequency of k among values of A,
NS is the total number of attributes in the source schema
S and att(S, k) is the number of attributes in the source
instance IS containing k. In other words, wk(A) will be
higher if k is frequent in values of A and does not appear
everywhere in the target instance IT .

The second component in Equation 1 combines the likely-
hood of each keyword in A being a typical keyword in B
using the disjuntive operator. This same idea for measuring
the similarity of a keyword to a attribute was successfully
applied in the context of keyword-based search over rela-
tional databases [17] and citation metadata extraction [7].
The weighting term wk(B) measures how likely a keyword
in A is to appear in a value of B:

wk(B) =
log(val(B, k))

log(VB)
·

„

1 −
log(att(T, k))

log(NT )

«

(2)

where val(B, k) returns the number of values of attribute
B where k occurs, VB is the total of values of B, att(T, k)
counts to attributes in IT containing k among its values and
NT is the total number of attributes in T .

Value-based similarity.While the keyword-based similar-
ity is appropriate when there is little or no overlap between
the values of A and B, the value-based similarity takes ad-
vantage of such overlap. Intuitively, we evaluate how many
values in A occur as values in B, combining the result for
each value by the disjunctive operator. That is:

V (A,B) = 1 −
Y

v∈A

1 −
log(ov(B))

log(|A|)

where ov(B) is 1 if value v occurs as value of B, or 0 other-
wise; and |A| is the number of values of A.



We consider two values as equal if they contain the same
keywords (i.e., we remove stopwords from them). In order
to speed up the computation, we represent each value by the
MD5 signature of its terms.

4.1.2 Label Similarity
We compute the label similarity between attributes A and
B taking into account their context (recall Section 3). We
don’t compare labels directly; instead we use stemming and
some simple heuristics to extract the relevant keywords in
the. For instace, “running time” is represented by {“run”,
“time”}. We will call these set of keywords as the label de-
scriptor of the attribute.

We estimate the similarity between a pair of label descriptors
using the “soft” version of the cosine measure in the vector
space model, named soft TF-IDF [5]. Unlike the traditional
cosine measure, the soft TF-IDF relaxes the requirement
that terms must match exactly and yields better results in
our setting. The soft TF-IDF model also considers similar
keywords by using a string matcher. In this way, given two
label keywords a and b, such that |a| ≤ |b|, we define the
string similarity as s(a, b) = |a|/|b| if a is prefix or suffix of
b, or 0 otherwise.

Thus, the label similarity measure is computed as follows.
Let close(θ, A, B) be the set of keyword pairs (a, b) where
a ∈ A and b ∈ B such that s(a, b) > θ and s(a, b) =
maxb′∈B s(a, b′).

L(A, B) =

P

(a,b)∈close(θ,A,B)

w(a, A) · w(b, B) · s(a, b)

r

P

a∈A

w(a,A)2 ·
r

P

b∈B

w(b, B)2

where w(a, A) and w(b, A) is the weight of label keywords a
and b regarding to attributes A and B, respectively.

We take into account two factors to compute the weight of
a keyword: (1) the level of keyword in the path from the
root entity to the attribute and (2) how rare is the keyword
among the attributes in schema. More formally, we define:

w(a, A) = level(a,A) · log(IDFa)

where IDFa is the inverse of the fraction of attribute label
descriptors in the underlying schema that contain a.

4.2 Finding Mappings
Once we define a similarity measure for pairs of attributes,
the next step is to find those pairs of attributes that do in
fact match. We say that attributes A and B match when
their similarity F (A, B) is higher than a given threshold (we
use 0.5 in this work). From a pairwise computation, we
build an attribute multimapping [16] M that is a relation
associating each attribute in S to all those that match it
in T . However, we only consider attributes of compatible
datatypes; moreover, for textual attributes, we also require
that their length be compatible. For instance, we want to
avoid mapping an attribute with movie reviews into another
one with movies titles (even though their datatypes are the
same and they share common values, as movie titles are
likely to appear in reviews). Thus, considering a textual

attribute X, let X̂ be the distribution of lengths of values
in X, E(X̂) be the mean value of X̂ and std(X̂) be the

standard deviation of X̂. We keep a mapping from A into

B if the difference between the mean values of Â and B̂

Figure 6: Pairwise attribute mappings.

is within one standard deviation of B̂. More precisely, we

require that |E(Â) − E(B̂)| ≤ max(std(B̂), ε), where ε is a
tolerance threshold (in our tests we found that ε = 1.5 works
well in practice).

Given this attribute multimapping M, we can move to map-
ping entities. To accomplish this, we first generate an entity
multimapping M′ from M in which entities E1 ∈ S and
E2 ∈ T are mapped if an attribute of E1 is mapped to an
attribute of E2 in M. For instance, in Figure 6, the entity
artist is mapped to album, since there is a attribute match
between them, name → artist.

We compute the similarity between entities E1 and E2 by
using the disjoint operator over the set of mapped attribute
pairs between E1 and E2, denoted P(E1, E2):

F ′(E1, E2) = 1 −
Y

(A,B)∈P(E1,E2)

1 − F (A,B)

where A and B are attributes belonging to E1 and E2, re-
spectively, and F (A,B) counts for the similarity between A
and B.

4.2.1 Mapping conflicts
It is possible that M induces conflicting mappings between
entities in M′. To see this, consider Figure 6, which dictates
that the artist, CD and genre information will be merged to-
gether into a single album entity. As the target schema does
not allow more than a style per album, the values of artist
and title must be duplicated for every CD with more than
one genre in the source instance. Now consider mapping the
track entities: note that we must also repeat all tracks as
sub-entities for each duplicate album, which leads to high
redundancy. We solve this situation by avoiding pairs con-
necting a set of source entities to a path of target entities
unless this set is connected by a single path as well. More
precisely, we are looking for a entity mapping µ′ that map
entity paths to entity trees. For instance, in Figure 6 we
must choose between mapping the genre information (a) or
the track information (b and c) because the entities CD,
genre and song in the source do not lie in a single path, but
in a tree. In this case, we say that a has a conflict with b
and c.

Thus, given the entity multimapping M′, we need to find
the best subset of entity pairs with no conflicts to generate
a entity mapping µ′. As it turns out, this is an NP-complete
optimization problem. To see this, let G(V, E) be a graph
where V contains pairs of entities in M′ and E contains an



edge u, v iff u, v ∈ V conflict with each other. We want
to find an entity mapping that is contained in M′ (i.e., a
subset of V ) with maximal score and without any conflicts;
that is, we want to remove from M′ those entity mappings
that cause conflicts and have low scores. This is equivalent
of finding a minimun-weigth vertex cover in G [10]. We use
a simple greedy heuristic in our work. First, we define a
score for each vertex by decreasing its original score (given
by F ′) by scores of its adjacent vertices. We then remove
the vertex with smallest score and update the scores of its
neighbor vertices until no edges are left in the graph. The
remaining set of vertices compose µ′ as the best subset of
entity pairs of M′.

4.2.2 The final attribute mapping
We are now ready to discuss how we arrive at the final at-
tribute mapping µ that associates attributes in S into at-
tributes in T . Note that, unlike M, µ is a function. More-
over, as customary [21], we require µ to be injective; that is,
each attribute in S is mapped to at most one attribute in
T , and vice-versa. We obtain µ from M and µ′ as follows.
Given match attributes A and B in M and its respective en-
tities E1 and E2 in µ′, we multiply the attribute similarity
F (A, B) by the entity similarity F ′(E1, E2). Here, the entity
similarity acts as a structural score, by privileging attribute
mappings between high scored pair of entities. Notice that
if E1 and E2 are not in µ′ then attribute pair A and B is
not considered. Finally, we use the best filter algorithm [16]
to produce µ. That is, we chose the best available candidate
pairs from M until all attributes are mapped.

4.3 Translating instances
Once a mapping µ : S → T is defined, the last step of the
Data Fitting process is to restructure the source instance
IS by applying the transformations defined in µ. This does
not imply only relabeling but may also involve structure
changes. For instance, consider the entity genre illustrated
in Figure 6, which originally is descedent of entity CD. How-
ever, in the target schema attributes of genre and CD are
mapped to a single entity album.

This process is similar to the content creation and structur-
ing/tagging steps for publishing relational data as [22]. In
particular, we adapted the path outer union and hash-based
tagger techniques. We start by extracting the content of IS

by decomposing it into a relation. The purpose of decom-
posing IS is provide an intermediary representation of the
data, where there is no particular nesting, such that it can
be grouped and nested according to any other given struc-
ture. More precisely, consider a relation R(B1, B2, . . . , Bn),
where each Bi is a attribute in T , such that each path in the
source instance IS from the root entity to a leaf-level entity
represents a tuple ri ∈ R. For each attribute A with value
v in a path, we insert v as value of µ(A) in ri, where µ(A)
returns the mapped attribute Bi for A. Other attributes are
null.

Next, we tag and struct the relational content in order to
generate instances I1, I2, . . . , In, such that Ii conforms to the
target schema T . Let T ′

i be a sub-tree of T that contains
the entities presenting at least a attribute defined in tuple
ri ∈ R. We note that T ′

i define the desired structure to tuple
ri. Therefore, for each ri, we generate the target instances
by reproducing entities in T ′

i and associating the attributes
and values found in ri for each entity. To avoid duplicates,
we use a main-memory hash table to look up whether an
entity was already included in the final result.

5. EXPERIMENTS
We now present an experimental evaluation of our Data Fit-
ting method carried out with real Web data. The experimen-
tal data was acquired from popular sites from four domains:
movies, music, books and academic articles. For each do-
main, we chose representative websites and extracted data
from them. Table 1 describes the data collections we use in
this work, while Table 2 presents the sites we used to ob-
tain them. All data used in our experiments is available at
http://www.ucalgary.ca/~denilson/fdm.

Source Collection Target Collection
Domain

Entities Attr. Entities Attr.
Overlap

Movies 774 77 8,914 19 10
Music 714 40 10,000 4 4
Books 789 5 1,211 19 4

Articles 1,630 6 8,000 13 4

Table 1: Data collections used in the experiments.
The Overlap column indicates the number of perfect
matches between attributes in the source and target
collections.

Domain Source collections Target collections
Movies movies.yahoo.com imdb.com
Music pandora.com&itunes.com musicbrainz.com
Books books.google.com dblp.uni-trier.de

Articles sigmod.org/record dblp.uni-trier.de

Table 2: Sites used in the experiments.

We implement our method by using inverted file indices [2]
such that given a keyword or value signature we can retrieve
the list of attributes where it occurs. We note that the time
for building such indices dominates the whole experiment
time, where the Data Fitting processing takes hundreds of
milliseconds for each input. Furthermore, our greedy heuris-
tic for solving the mapping conflicts, as described in Sec-
tion 4.2.1, uses a Fibonacci heap [6] to remove the vertex
with minimum score. Our implementation was done in Perl,
and all experiments were run on a standard desktop machine
(Pentium Core 2 Duo 2.13 GHz, 2 GB RAM).

As our main goal is to produce good mappings, we assess the
accuracy of our method using the F-measure metric, which
combines precision and recall and is commonly used in Infor-
mation Retrieval experiments [2]. To do that, we manually
inspected all data collections and defined the correct map-
pings between attributes and entities on a best effort basis.
For instance, consider the combined plot for Movies in Fig-
ure 5, whose F-measure is 0.94 (0.97 of precision and 0.92 of
recall). This means that, on average, our method chose less
than one wrong pair (false positive) and missed less than
one correct pair (false negative) in the final mapping, in the
50 runs of that experiment.

We now study the effectiveness of our Data Fitting approach
with the different similarity measures discussed in Section 4
(recall Figure 5). For increased readability, we refer to the F ,
C, K, V and L scores as combined, content, keywords, values
and labels in this section. Notice that K score (keywords)
counts for numeric similarity as well, as opposite to values.

Effectiveness of the combined Data Fitting score.Fig-
ure 7 shows the average matching accuracy for different sim-
ilarity measures. For each domain, we pick 50 samples of 10
“main” entities with their sub-entities as well (e.g., for the
Movies domain with pick a movie with its actors, directors,
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Figure 7: Accuracy of individual similarity measures
across domains.

etc.), and use our Data Fitting method with different simi-
larity measures. As the graph shows, the combined method
we proposed (recall Section 4.1) outperforms all individual
similarity measures; this is particularly evident for the most
complex domains in our tests: Movies and Music.

Impact of source instance size.We use the Movies data
collections in this experiment. Figure 8(a) compares the ef-
fectiveness of the Data Fitting method with varying sizes of
the source instance; each plot shows the average accuracy
of 20 runs, each with a different sample from the source
movies collection. Note that the combined method again
outperforms the others, particularly for smaller source in-
stances (i.e., when exchanging fewer entities). The drop in
performance of the labels approach is due to the fact that
more optional attributes are present in larger samples.

Impact of the target instance size.Figure 8(b) shows how
the F-scores of the combined similarity method vary as a
function of the number of entities in the target data col-
lection. Each plot shows the average accuracy of 5 runs,
each with a different subset of the target collection in Ta-
ble 1. In each run we use 20 samples from the corresponding
source data collection, with 10“main”entities each. Observe
that the Data Fitting method performs very well regardless
of collection size in simple collections (Articles and Books),
which are likely to occur on the Web. For the more com-
plex collections, as expected, the accuracy of the method
improves as more entities are stored in the target collection.

Resilience to noise.We also studied the impact of spuri-
ous attributes in the source instance on the accuracy of our
method, using the Movies data collections. Each plot shows
the average accuracy of 20 runs, each with 10 movies. We
start with only those attributes that have a perfect match
into the target data collection and add unmatched attributes,
and progressively add other attributes (with real data from
the Web source) that have no match in the target collec-
tion. As one can see, the combined similarity suffers the
least relative drop in accuracy of all measures, remaining
almost perfect even when only 1/3 of the attributes in the
source instance have a match in the target instance (recall
from Table 1 that only 10 attributes match in the Movies
data collections).
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(a) Impact of the size of the source instance.
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(b) Impact of the size of the target instance.
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Figure 8: Accuracy results.

6. CONCLUSION
This paper introduced a lightweight data exchange frame-
work sharing data on the Web or through P2P systems. Un-
like previous solutions to the problem, our approach does not
require the data to be stored inside database systems, nor
the use of special-purpose schema mapping tools. Thus, our
method is particularly attractive to for non-expert and ca-
sual users lacking the expertise or resources for setting up
a complex data sharing environment. The data model and
schema formalism used in our method are simple yet pow-
erful enough for the setting considered. Finally, extensive
experimental results with real Web data showed that our
approach is effective and very promising.

There are several lines for future work. For instance, some-



times one may be interested in exchanging only small frag-
ments of a large entity, and to associate them with other
existing entities (e.g., a user adding a new CD to an ex-
isting artist). Thus, it would be interesting to define a
means for the user to specify such update operations in a
simple, intuitive way (i.e., without having to write complex
XQuery update statements). Also, we would like to extend
our model with simple constraints to enrich the data trans-
lation algorithm; in particular, we believe that uniqueness
and referential constraints should be enough for most prac-
tical settings. Finally, it would be interesting to study how
a data exchange tool based on a lightweight framework such
ours fares against more sophisticated ones in the context of
the Web.
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2005-9); UOL (www.uol.com.br), through the “UOL Bolsa
Pes-quisa” program, Proc. num. 20060520151215a; and in-
dividual grants from the Alberta Ingenuity Fund (D. Bar-
bosa), CAPES (F. Mesquita), and CNPq (303032/2004-9 A.
S. da Silva).

7. REFERENCES
[1] M. Arenas and L. Libkin. XML data exchange:

consistency and query answering. In PODS ’05:
Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 13–24, New York, NY,
USA, 2005. ACM Press.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0. World Wide Web Consortium, fourth edition,
August 16 2006. http://www.w3.org/TR/xml.

[4] W. W. Cohen and H. Hirsh. Joins that Generalize:
Text Classification Using WHIRL. In Proceedings of
the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 169–173, 1998.

[5] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
Comparison of String Distance Metrics for
Name-Matching Tasks. In Proceedings of IJCAI-03
Workshop on Information Integration on the Web,
pages 73–78, 2003.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, MA, USA, 2nd edition, 2001.

[7] E. Cortez, A. S. da Silva, M. A. Gonçalves,
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