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In this article we present FLUX-CiM, a novel method
for extracting components (e.g., author names, article
titles, venues, page numbers) from bibliographic cita-
tions. Our method does not rely on patterns encoding
specific delimiters used in a particular citation style.This
feature yields a high degree of automation and flexibil-
ity, and allows FLUX-CiM to extract from citations in any
given format. Differently from previous methods that are
based on models learned from user-driven training, our
method relies on a knowledge base automatically con-
structed from an existing set of sample metadata records
from a given field (e.g., computer science, health sci-
ences, social sciences, etc.). These records are usually
available on the Web or other public data repositories.
To demonstrate the effectiveness and applicability of our
proposed method, we present a series of experiments in
which we apply it to extract bibliographic data from cita-
tions in articles of different fields. Results of these experi-
ments exhibit precision and recall levels above 94% for all
fields, and perfect extraction for the large majority of cita-
tions tested. In addition, in a comparison against a state-
of-the-art information-extraction method, ours produced
superior results without the training phase required by
that method. Finally, we present a strategy for using bib-
liographic data resulting from the extraction process with
FLUX-CiM to automatically update and expand the knowl-
edge base of a given domain. We show that this strategy
can be used to achieve good extraction results even if
only a very small initial sample of bibliographic records
is available for building the knowledge base.
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Introduction

Citation management is a central aspect of modern digi-
tal libraries. Citations serve, for example, as a fundamental
evidence of the impact or significance of particular scientific
articles and therefore of the research they report. Evaluation
of an individual’s performances for promotions and grants
may use citations as evidence to evaluate competence and
the impact of a researcher’s work. Citations also have
been used as an auxiliary evidence in information retrieval
tasks such as automatic document classification presented in
Calado et al. (2006) and Couto et al. (2006), indexing and
ranking proposed by Lawrence, Giles, and Bollacker (1999),
and quality assessment as shown in Gonçalves, Moreira,
Fox, and Watson (2007). Bibliographic measures that rely
on citations have served as inspiration for modern Web
link analysis algorithms such as PageRank, presented in
Brin and Page (1998). Citations in a broader sense1 are the
basis of important projects such as the Digital Bibliogra-
phy & Library Project (DBLP; http://www.informatik.uni-
trier.de/∼ley/db) and the Computer Science Bibliography
(http://liinwww.ira.uka.de/bibliography).

Citation management in a digital library involves aspects
such as (a) data cleaning to correct mistakes such as assign-
ment of improper authorship or splitting of a researcher’s
production due to the use of multiple names in publications;
and (b) removal of duplicates, mainly after data integration
or data input tasks. Most of the techniques to perform these
tasks rely on the assumption that we can correctly identify the

1Here interpreted as a set of bibliographic information (e.g., author name,
title, publication venue, or year) that is pertinent to a particular article.
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main components within a citation, such as authors’ names,
title, publication venue, year, pages, and so on. This is not an
easy task due to a variety of reasons, such as those identified
by Lee, Kang, Mitra, Giles, and On (2007): data-entry errors,
various citation formats, lack of (the enforcement of) a stan-
dard, imperfect citation-gathering software, common author
names, abbreviations of publication venues, and large-scale
citation data.

We present FLUX-CiM (Flexible Unsupervised Extraction-
Citation Metada), a method to help extract the correct
components of citations in any given format. Differently
from related approaches that were presented in Embley et al.
(1999), Day et al. (2005), and Peng and McCallum (2006)
that rely on manually built training data for recognizing the
components of a citation, in our case, our method relies on a
knowledge base automatically constructed from an existing
set of sample metadata records from a given area. Such sam-
ple metadata records are very easy to obtain (e.g., collected
directly from theWeb or harvested from open archives) (Open
Archives Initiative, 2005). In brief, our extraction method
is based on (a) estimating the probability of a given term
found on a citation to occur as a value of a given citation
field according to the information encoded in the knowledge
base and (b) the use of generic structural properties of biblio-
graphic citations (e.g., the use of punctuation signs to delimit
fields). This means that our approach does not rely on patterns
encoding specific delimiters of a particular citation style. This
gives to our method a high degree of automation and flexibil-
ity, as demonstrated by experiments we have conducted and
report here.

Preliminary results with our work on FLUX-CiM
were previously presented in Cortez, da Silva, Gonçalves,
Mesquita, and de Moura (2007), and here, we present a
number of extensions to this work, including the following.

We report results of experiments with our method to
extract information from citations in three different domains.
In the Computer Science area, we used data from the
CORA (http://www.cs.umass.edu/∼mccallum/data/cora-ie.
tar.gz) that was used in McCallum (2006), in the Health Sci-
ences area, data from several journal articles sponsored by the
U.S. National Institutes of Health (NIH), and in the Social
Sciences area, we used data from several journal articles
sponsored by the Scielo Digital Library (http://www.scielo.
org/). To build the knowledge base, we used in the Com-
puter Science case data from CORA itself that was not
included in the experimental evaluation. In the Health Sci-
ences and Social Sciences cases, we used metadata records
from PubMed Central (PMC; http://www.pubmedcentral.
nih.gov/) and the Scielo Digital Library, respectively, both
being free digital repositories. Results of these experiments
indicated that our method was able to correctly extract, on
average, over 94% of the field values present in the citations.
In addition, the extraction for more than 82% of the citations
was perfect, with all fields correctly extracted.

We also report on experiments carried out to compare our
method with Conditional Random Fields (CRFs; McCallum,
2006) for solving this problem. CRF is a state-of-the-art

approach in information extraction (discussed later). These
results corroborate our claims regarding the high quality
our method achieves, even without user-assisted training.
In particular, FLUX-CiM produced a far-superior performance
when the input documents had citations formatted with
several different styles.

Finally, we present a strategy for using bibliographic data
resulting from the extraction process with FLUX-CiM to
automatically update and expand the knowledge base of a
given domain. We show that this feedback strategy can be
used to achieve good extraction results even if only a few
sample bibliographic records are available for building the
knowledge base.

This article is organized as follows. First, we cover related
work and discuss the background of the concepts used in our
approach. After presenting the proposed method in detail,
we present our experiments and a comparative study with
a state-of-the-art information extraction approach. We then
present a strategy for automatically updating and expanding
the knowledge base using feedback. We conclude the paper
with directions for future work.

Related Work

In past years, several tools, methods, and techniques have
been proposed to address the issue of data extraction from
textual documents, with a focus on documents available on
the Web. A brief survey on this topic is presented in Laender,
Ribeiro-Neto, da Silva, and Teixeira (2002b). For dealing
with such a problem, several distinct techniques have been
deployed, such as HTML structure analysis (Arasu & Garcia-
Molina, 2003; Crescenzi, Mecca, & Merialdo, 2001; Liu,
Grossman, & Zhai, 2003; Reis, Golgher, Silva, & Laender,
2004), natural language processing (Freitag & McCallum,
2000; Muslea, Minton, & Knoblock, 2001; Soderland, 1999),
machine learning (Hsu & Dung, 1998; Kushmerick, 2000),
data modeling (Laender, Ribeiro-Neto, & da Silva, 2002a),
and ontologies (Embley et al. (1999)).

Most approaches in the literature use training source doc-
uments (e.g., Web pages), provided with labeled example
values, from which the regularities in the formating sur-
rounding values of interest are learned. In such approaches,
the extraction process consists of recognizing and extracting
strings within these surroundings, occurring in input doc-
uments similar to those provided in the training. However,
FLUX-CiM does not rely on formatting features of the input
documents (e.g., regularities in value surroundings or page
structure) but rather on their content, considering features of
the bibliographic fields along with their values. Thus, FLUX-
CiM is able to recognize appropriate values to use in the fields
regardless of the particular format of the input documents or
style used in citation records.

Another content-based approach for data extraction is the
one proposed by Embley et al. (1999) on ontology-based
data extraction. This approach uses a semantic data model
to construct an ontology that describes the data of inter-
est, including relationships, lexical appearances, and context
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keywords. By parsing this ontology, a relational database
schema and a constant/keyword recognizer are automatically
generated, which are then used to extract data that will popu-
late the database. While most approaches rely on the textual
context surrounding the data of interest, the ontology-based
approach relies mainly on the expected content of the pages,
according to what was anticipated by a prespecified ontol-
ogy built by a specialist. If the ontology is representative
enough, the extraction process is fully automated. In this case,
the extraction process is inherently resilient (i.e., it works
properly even if the formatting features of the source doc-
uments change) and adaptable (i.e., it works for documents
from many distinct sources belonging to the same application
domain).

In the Digital Library realm, automatic metadata extrac-
tion is a rapidly growing related area of research which
has been recently gaining much attention. Han et al. (2003)
described a Support Vector Machine classification-based
method for metadata extraction from the header part of
research papers and showed that it outperforms other machine
learning methods on the same task. MetaExtract is a system
to automatically assign Dublin Core + GEM metadata using
extraction through natural language processing techniques
applied to educational documents (Yilmazel, Finneran, &
Liddy, 2004). Hu, Li, Cao, Meyerzon, and Zheng (2005)
focused on title extraction from general documents (e.g.,
presentations, book chapters, technical papers, brochures,
reports, and letters). Paynter (2005) focused on the evalu-
ation of automatic metadata assignment tools and discussed
its advantages and limitations. Day et al. (2005) proposed
an approach for metadata extraction based on an ontologi-
cal knowledge representation framework called INFOMAP.
This approach, similarly to the one proposed in Embley et al.
(1999), requires an ontology to be built, in this case with the
help of the Compass editing tool. The authors reported good
extraction results considering six different (although fixed)
citation patterns for journal articles only.

McCallum (2006) addressed the problem of informa-
tion extraction of bibliographic data from research papers
and proposed the use of CRFs for solving this problem.
CRFs, presented in Lafferty, McCallum, and Pereira (2001),
are probabilistic models commonly used for extracting infor-
mation implicitly available on textual sources. They work
by assigning labels to segments in the input text. The label-
ing and the segmentation are based on a model generated
from a training process over instances of text manually
labeled and segmented. The training aims at capturing several
local features (e.g., field sequence, writing style), exter-
nal lexicon features (e.g., thesauri), and layout features (e.g.,
punctuation, font style) to be represented in the model. To
corroborate their claims regarding the quality of their pro-
posed method, the authors tested it with the CORA dataset,
which also was used in our experiments. Currently, CRF
constitutes state-of-the-art information extraction due to its
flexibility and the quality of the extraction results achieved.
Later, we present a comparative study between this method
and ours.

The idea of using feedback in information extraction,
although not novel, is a trend only recently explored in
the literature. It has been previously deployed with CRF
in Culotta, Kristjansson, McCallum, and Viola (2006), where
the authors presented a study on how to improve extraction
models using user feedback. That article also described a
framework designed to help users in manually correcting
CRF extraction models. We show that our extraction method
(FLUX-CiM) allows for using feedback to improve the qual-
ity of extraction results in a fully automated fashion (i.e.,
without user intervention). This is major distinction from the
work presented in Culotta et al. (2006), which does require a
user to manually guide the feedback process.

The FLUX-CiM Method

In this section, we present the details of our citation
metadata extraction method, FLUX-CiM. We provide some
concepts and definitions used throughout the discussion, and
then discuss each step that comprises our method. First, we
discuss the blocking step, in which a citation string contain-
ing the metadata to be extracted is split in syntactic units
called blocks. After the blocking step, we discuss the match-
ing step, which attempts to associate a citation metadata field
with each block based on the information available on the
knowledge base. We then discuss the binding step, in which
blocks left unassociated in the previous step are further ana-
lyzed for associations based on their relative position on the
citation string. Finally, we discuss the joining step, in which
blocks are joined to form the values of fields that compose a
metadata record.

Basic Concepts

Knowledge Base

A knowledge base is a set of pairs KB = {〈m1, O1〉, . . . ,
〈mn, On〉} in which each mi is a distinct bibliographic
metadata field, and Oi is a set of strings {oi,1, . . . , oi,ni

}
called occurrences. Intuitively, Oi is set of typical values for
field mi.

The process of building a knowledge base is trivial. Given
a set of bibliographic metadata records for a given area, we
simply process each record, and for each field, we extract
the values as occurrences. Note that this process requires
no human effort for selecting some form of “gold standard”
records. Indeed, the process is most likely to be automati-
cally carried out by using format conversion. For instance,
the knowledge base we built for testing our method over cita-
tions in the Computer Science domain came from a set of
bibtex entries available in the CORA collection (McCallum,
2006). For this, we simply parse each entry and store field val-
ues in our knowledge base. Regarding implementation, in the
prototype we used for our experiments, the knowledge base
is represented as an inverted index composed by the terms
found in the occurrences. In Figure 1, we present a very sim-
ple example of a knowledge base which includes only two
metadata fields: Author and Title.

1146 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2009
DOI: 10.1002/asi



KB = 〈Author, OAuthor〉, 〈Title, OTitle〉
OAuthor = “J.K. Rowling,” “Galadriel Waters,” “Beatrix Potter”

OTitle = “Harry Potter and the Half-Blood Prince”
“A Guide to Harry Potter,” “Peter Rabbit’s Halloween”

FIG. 1. A sample knowledge base.

Citation String

A citation string is a text portion encompassing a com-
plete citation from the list of citations in a file. In our method,
citation strings are obtained using simple format convert-
ers that extract text from files in PDF and other popular
formats. In Figure 2a, we present an example of a citation
string.

p-delimiters

A potential delimiter character, or p-delimiter, is any char-
acter other than A, . . . , Z, a, . . . , z, or 0, . . . , 9. Note that we
do not intrinsically assume p-delimiters as field delimiters.
Instead, as explained later, we keep track of them to verify if
they indeed are used as delimiters in the citation string being
processed.

Method Steps

Blocking. The first step in our extraction method consists of
splitting a citation string into substrings we call blocks. Let pl

and pr be p-delimiters, and C be a citation string. A block b
is a string containing no p-delimiters occurring in a sequence
plbpr, or bpr, where b is a prefix of C, or plb, where b is a
suffix of C.

In our method, we consider blocks as sets of terms that
will compose a value of a certain field. In the same citation
string, there could be more than one block that will be associ-
ated with a same field. In Figure 2b, the blocks identified for
our example citation string are marked with rectangles. The
rationale behind the idea of identifying blocks is the obser-
vation that in general, in a citation string every field value
is bounded by a p-delimiter, but not all p-delimiters bound a
field.

FIG. 2. A sample citation string (a) and the extraction steps: blocking (b), matching (c), binding (d and e), and joining (f).

Matching

The matching step consists of associating each block with
a bibliographic metadata field. To accomplish this, we match
each block against the occurrences composing the knowledge
base and evaluate to which field the block is more likely to
belong. For certain terms, this is very easy to accomplish.
For instance, the term “procedure” is clearly unrelated to all
fields except Title. In other cases we have ambiguous terms,
and we need to use the occurrences to estimate the degree of
ambiguity of terms with respect to the fields on the knowl-
edge base. For instance, consider the simple knowledge base
in Figure 1. In these occurrences, the term Potter is consid-
ered ambiguous since it is found in both occurrences, Author
and Title. On the other hand, the term Halloween is typical
of the Title occurrences, and thus unambiguous.

In the matching phase, textual values (e.g., titles, author
names, etc.) are handled using a similarity function we call
Field Frequency (FF), which is an adaptation of the AF func-
tion proposed by Mesquita, da Silva, de Moura, Calado, and
Laender (2007). The FF function is defined next.

FF(b, mi) =

∑
t∈T(mi)∩T(b)

fitness(t, mi)

|T(b)| (1)

where T(mi) is the set of all terms found on the occurrences of
metadata field mi, and T(b) is the set of terms found in block
b. The fitness(t, mi) is a function that computes the fitness
measure as described later.

The FF function estimates the probability of b being a
part of an occurrence of mi by evaluating how typical the
terms in b are in the occurrences of this field according to
the knowledge base. For this, a fitness measure is defined (see
Equation 2). Given an ambiguous term, the fitness function
attempts to measure how typical this term is in each field
where it occurs. For instance, in the occurrences of Figure 1,
the ambiguous term Potter is more typical in field Title than
it is in field Author.

The fitness measure is computed by the following formula:

fitness(t, mi) = f(t, mi)

N(t)
× f(t, mi)

fmax(mi)
(2)
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where f(t, mi) is the number of occurrences oi,k ∈ Oi associ-
ated with field mi in the knowledge base which contains the
term t, fmax(mi) is the highest frequency of any term among
the occurrences oi,k ∈ Oi, and N(t) is the total number of
occurrences of term t in the knowledge base.

The first fraction in Equation 2 expresses the probability
of term t being part of an occurrence of mi in the knowledge
base. Such probability would be suitable for our purposes
if all mi had the same number of occurrences in the knowl-
edge base. Since this is not true in general, fields with more
occurrences would tend to have higher probability values.
Therefore, we add the second fraction as a normalization fac-
tor to avoid this problem. This fraction gives the frequency of
t in occurrences of mi normalized by the maximum frequency
of a term in occurrences of mi. Thus, it varies from 0 (com-
pletely infrequent) to 1 (most frequent). This normalization
also is useful for making the frequency values comparable
among all fields.

Thus, for each block b in the citation string, we calculate
FF(mi, b) for every field mi in the knowledge base. Finally,
b is associated with the field which gives the maximum FF
value.

For the case of numeric values (e.g., page numbers, year,
volume, etc.), traditional textual similarity functions do not
work properly as it was shown in Agrawal, Chaudhurri,
Das, and Gionis (2003), (see Equation 3). Thus, for numeric
attributes, we consider a simple, yet effective, approach: We
assume that the values in each citation field follow a gaus-
sian distribution. The similarity between the value in the
citation and the values of the knowledge base is defined
as the mean value of the probability density function. We
call this function Numeric Matching (NM). We normalize
this function by the maximum probability density, which is
reached when a given value is equal to the mean. Thus, we
define the matching score for numeric values as follows:

NM(b, mi) = 1

|b|
∑
v∈b

e− v − µ

2σ2
(3)

where σ and ν are the standard deviation and mean, respec-
tively, of values of mi.

After the matching step, most of the blocks are associated
with one of the fields in the knowledge base. We refer to these
blocks as matched. However, unmatched blocks still may
occur; that is, some blocks may remain unassociated with
any field after the matching phase. This situation occurs
with blocks composed by terms not present in the occurrences
of the knowledge base.

In Figure 2c we exemplify an output of the matching step.
In this figure, unmatched blocks are labeled with ??? and
matched blocks are labeled with the names of their corre-
sponding fields. Cases such as these must be addressed, and
this is the task carried out by the binding step explained next.

Binding

In the matching step, several blocks were associated with
a field from the knowledge base. Based on this informa-
tion, the binding step associates remaining unmatched blocks

with fields. In Figure 2c, we illustrate two cases of single
unmatched blocks (marked with “???”). However, in general,
there could be a sequence of unmatched blocks that need to
be associated with some field. The way we solve this problem
depends on the neighborhood of the sequence of unmatched
blocks on the citation strings. There are three distinct cases
we consider: a homogeneous neighborhood, a partial neigh-
borhood, and a heterogeneous neighborhood. Next, we detail
the specific binding strategy adopted for each of these cases.

Homogeneous Neighborhood

Let l and r be matched blocks associated with the
same field m. Suppose these blocks occur in a sequence
l, p0, u1, p1, . . . , un, pn, r, in which each ui is a unmatched
block and each pi is a p-delimiter. In this case, all ui will be
associated with m. An example of a homogeneous neighbor-
hood is illustrated in Figure 2c, where the block containing
the term “C” is associated with Author in Figure 2d since
both of its neighbors are associated with this field.

Partial Neighborhood

Let b be a matched block associated with field m. Suppose
this block occurs in a sequence I = u1, p1, . . . , un, pn, b or
in a sequence F = b, p0, u1, p1, . . . , un, in which each ui is
an unmatched block and each pi is a p-delimiter. In this case,
all ui will be associated with m. Note that in I, blocks ui begin
the citation string while in F, blocks ui end the citation string.

Heterogeneous Neighborhood

Consider the example in Figure 2c, where we must decide
whether the block containing “Bossa Nova” should be asso-
ciated with Author, as the block on the left, or to Title, as the
block on the right.

In such situations, our method resorts to the available
p-delimiters surrounding the unmatched blocks, and verifies
if (a) they are typically found between contiguous blocks of
distinct fields or (b) they are typically found between con-
tiguous blocks of the same field. In the first case, we regard
the p-delimiter as being indeed a field delimiter, and thus, the
two blocks it separates cannot be associated with the same
field. In the second case, we regard the p-delimiter as being
simply a character that appears in values of a field, and thus,
the two blocks it separates are likely to be associated with
the same field. This verification is carried out based on the
results of the matching step for a set of citations, where sev-
eral blocks are labeled with their corresponding field. Then,
we can analyze how common a p-delimiter is for each field
and how they typically behave; that is, which of the cases
(a or b) apply.

For instance, in Figure 2, because “.” is likely to be
a delimiter between Author and Title and “:” is likely to
be a character occurring in values of Title, we would choose
to associate “Bossa Nova” with Title rather than with Author.
These ideas are elaborated in the following sequence.
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Consider the sequence l, p0, u1, p1, . . . , un, pn, r, where
l and r are matched blocks associated with distinct fields ml

and mr, respectively, ui are unmatched blocks, and pi are
p-delimiters. Our problem is to determine, for each ui,
whether it will be associated with ml or to mr. First, we con-
sider that only one of the p-delimiters pi is indeed a field
delimiter.

Based on this, once we find that some pi is a field delimiter,
then we associate all unmatched blocks uj (0 < j ≤ i) with
ml (i.e., the same field as the block on the left), and all uk

(i > k ≥ n) with mr (i.e., the same field as the block on the
right).

Now, consider the following expressions:

T(pk, ml, mr) = f(pk, ml, mr)∑
pj∈P

f(pj, ml, mr)
(4)

where f(p, ml, mr) is the frequency of p-delimiter p between
contiguous blocks associated with fields ml and mr by the
matching step, and P is the set of all p-delimiters.

C(pk, m) = f(pk, m)∑
pj∈P

f(pj, m)
(5)

where f(p, m) is the frequency of a p-delimiter p between
contiguous blocks associated with the same field m by the
matching step, and P is the set of all p-delimiters.

Intuitively, Equation 4 estimates the probability of a given
p-delimiter pi to be a delimiter between fields ml and mr

while Equation 5 estimates the probability of pi to be a char-
acter occurring as part of the values of a field m. Note that the
frequencies used in these equations are obtained after ana-
lyzing each p-delimiter in all citations to be extracted. This
is done to ensure that meaningful statistics on the role and
position of the p-delimiter are produced.

In our method, these factors are considered for deciding
which p-delimiter pi is the field delimiter in the sequence.
For this, we use Equation 6, defined as follows.

D(pk, ml, mr) = 1 −
[
(1 − T(pk, ml, mr)

×
∏

0≤ j<k

1 − C(pj, ml) (6)

×
∏

k>j≥n

1 − C(pj, mr)

]

where pk is a p-delimiter and k is its ordinal position.
Given a delimiter pk, Equation 6 takes into account

(a) the probability of pk to be a typical field delimiter between
values of ml and mr, (b) the probability of the p-delimiters on
the left of pk to be part of the values of field ml, and (c) the
probability of the p-delimiters on the right of pk to be part of
the values of field mr.

Thus, the problem of binding the sequence of unmatched
blocks within a heterogeneous neighborhood is solved by
calculating D(pk, ml, mr) for each p-delimiter pk in the

sequence. The field delimiter is selected as the one for which
this equation gives the highest value.

In Figure 2e, for instance, the block containing the term
“Bossa Nova” is associated with Title since D(“:”, Title,
Author) < D(“.”, Title, Author).

Joining

When the binding step is over, each block in the cita-
tion string is associated with a metadata field. Then, the last
step in our extraction method consists of joining together
blocks associated with a same field to form the values of that
field. For most of the cases, this step is straightforward to
accomplish since it simply requires joining contiguous blocks
associated with a same field. However, joining blocks associ-
ated with the Author field requires a more careful procedure
since there may be several Author values on a citation string.
Thus, in this section, we describe how we handled joining
blocks to form values for the Author field. For instance, the
Author blocks in Figure 2e, must be joined to form Author
values illustrated in Figure 2f.

The solution for this problem relies on the information
available on the knowledge base. Let η be the average num-
ber of terms in the occurrences of the Author field in the
knowledge base. We assume that the number of terms found
in the values of Author in any citation string is approximately
equal to η.

Now, consider that there is some set s of strings used as
implicit delimiters for separating the values of Author in a
citation string. For instance, in a given citation, the string “,”
may be used as a delimiter for all values of Authors, except for
the last value which is separated by the string “and”. In this
case, s = {“,”, “and”}. In our method, as mentioned earlier,
we rely on the observation that the number of terms bounded
by the strings in s should be approximately equal to η.

Consider a sequence of blocks that must be joined to com-
pose the values of Author. Given a set of delimiter strings
s, two or more contiguous blocks should be joined if the
p-delimiter p between them is not a delimiter string (i.e,
p �∈ s). Hence, we must determine which p-delimiters com-
pose s.

The solution we adopt is to take candidate sets of delimiters
and, for each candidate set, evaluate if this set is the one that
results in values of Author with a number of terms closest
to η. For this, we define a metric we call delimiting error,
which is based on the difference between the lengths of the
values (in number of terms) and the average length found in
the knowledge base (η).

de(s, a, η) =
∏

x∈split(s,a)

dif (len(x), η) (7)

where s is a set of delimiters, a is the portion of the cita-
tion string composed by Author blocks, and the following
auxiliary functions are used:

• split(s, a) returns all substrings of a that are bounded by some
delimiter p ∈ s.
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• len(x) returns the number of terms in the string x.
• dif (l1, l2) = |l1 − l2| if l1 �= l2, and dif (l1, l2) = ε0 otherwise,

where ε0 is a small constant.

Intuitively, given a citation string with a set of Author
blocks to be joined, Equation 7 calculates a score based
on the distance between η and the number of terms of
each Author value obtained when using s as the set of
delimiters.

Thus, let P be the set of p-delimiters between Author
blocks. We evaluate the delimiting error for each subset of
p-delimiters s ⊆ P using Equation 7. The set of delimiters
used for Author values will be the one with the smallest
delimiting error.

As an example, consider the citation in Figure 2e, in which
the set of delimiters between Author blocks is “.”, ”,”. Also
assume η = 2.7.2 When the delimiter “,” is used as a separator
of Author values, the delimiting error is about 0.21. In con-
trast, using the delimiter “.” or the delimiter set “.”, “,”, the
delimiting error is about 0.83 in both cases. Thus, the delim-
iter “,” is the best choice. In Figure 2f, we show the Author
values obtained with this delimiter.

Experiments

In this section, we present the experiments performed
to evaluate our approach on the task of extracting meta-
data from bibliographic citation strings. We also present
an experimental comparison between our proposed method,
FLUX-CiM, and CRF (McCallum, 2006), a method regarded
as the state-of-the-art in bibliographic data extraction from
research papers.

In all experiments, we carried out similar extraction tasks
over citations from three distinct domains: Health Sciences
(HS), Social Sciences (SS), and Computer Science (CORA).
In all cases, we use samples of citation records of each specific
domain to generate the knowledge bases. Then, we executed
extraction processes over a set of citations strings from the
same domain. Table 1 presents some features of each collec-
tion that we used in our experiments. Note that the number of
metadata fields in CORA varies from 1 to 13. This happens
because the citation strings in this collection come from dif-
ferent sources such as conference papers and journal papers
from several distinct publishers, and thus, they have distinct
citation styles.

Setup

CORA is a heterogeneous collection composed by 500
assorted citations from several computer science conferences
and journals, and was previously used by McCallum (2006) to
evaluate CRF. We randomly choose 350 citations to generate
the knowledge base and another 150 different citations to
test our method. This proportion was the same as that used
in McCallum (2006) to evaluate CRF.

2This is the actual value we found in one of the citation collections used
in our experiments.

TABLE 1. Features of the collections used in the experiments.

Domain Knowledge base size No. of fields No. of citations

HS 5,000 6 2,000
SS 5,000 6 2,000
CORA 350 1–13 150

HS = Health Sciences; SS = Social Sciences; CORA = Computer
Science.

For experiments in the HS domain, we used a col-
lection of citations from PMC. For the SS domain, the
collection was obtained from the Scielo Digital Library
(http://www.scielo.org/). For each of these domains, we used
collections composed of more than 50,000 citation records.
The HS and the SS collections are both considered as well-
organized since their citation strings follow a uniform style
and as controlled since for each citation string there is a
structured metadata record where the fields of the citation
string are explicitly identified. Therefore, by carrying out
experiments over these controlled collections, we can auto-
matically verify the extraction results for a large number of
citation strings. The knowledge bases were randomly built
with 5,000 citations while the extraction process used 2,000
different citations. In so doing, we ensured that there was no
overlap between the knowledge base and the citations set.

The HS and the SS collections also were used to perform an
experiment that evaluates how our method behaves when the
number of citation records in the knowledge base varies. For
this experiment, we vary the size of the knowledge base from
50 to 10,000 citation records. Note that we were unable to
perform this experiment with CORA due to the small number
of citations available.

All experiments we report in this section were repeated five
times. Thus, each value presented here represents the aver-
age of the values obtained in each of the five repetitions. In
our experiments, we evaluated the extraction results obtained
after the whole extraction process.

In the evaluation, we used the well-known precision,
recall, and F-measure metrics, which are computed as fol-
lows. Let Bi be a reference set and Si be a test set to be
compared with Bi. We define precision (Pi), recall (Ri) and
F-measure (Fi) as:

Pi = |Bi ∩ Si|
|Si| Ri = |Bi ∩ Si|

|Bi| Fi = 2(Ri.Pi)

(Ri + Pi)
(8)

Results

Verifying the Blocking Hypothesis

The first result we report aims at verifying in practice
the hypothesis we have formulated regarding blocking: In
general, in a citation string, every field value is bound by a
p-delimiter, but not all p-delimiters bound a value. To verify
this, we look into the citation in the collections we used for
the experiments and count the field values that are bound by
some p-delimiter. As expected, in all datasets, 100% of the
field values were bound by a p-delimiter.
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TABLE 2. Block-level precision and recall for each field after both the matching and the binding steps for the Computer Science (CORA), Health Sciences
(b), and Social Sciences (c) domains. The percentage of unmatched blocks after the matching step also is presented.

Matching Binding
Unmatched

Field Precision (%) Recall (%) F blocks (%) Precision (%) Recall (%) F

(a) CORA
Author 99.78 79.29 0.8836 20.63 99.82 98.96 0.9939
Title 98.11 90.43 0.9412 7.83 97.19 97.61 0.9740
Journal 95.80 97.86 0.9682 1.43 95.80 97.86 0.9682
Date 99.70 97.38 0.9853 2.04 97.98 99.13 0.9855
Pages 97.87 98.71 0.9829 1.29 97.06 99.14 0.9809
Conference 100.00 96.00 0.9796 0.40 99.18 96.40 0.9777
Place 98.88 89.85 0.9415 9.64 98.48 98.48 0.9848
Publisher 100.00 100.00 1.0000 0.00 100.00 100.00 1.0000
Number 97.87 97.87 0.9787 2.13 97.87 97.87 0.9787
Volume 100.00 98.25 0.9912 0.00 100.00 98.25 0.9912
Average 98.80 94.56 0.9652 4.54 98.34 98.3 0.9835

(b) Health Sciences
Author 99.04 94.33 0.9663 4.96 98.89 99.26 0.9907
Title 93.71 90.54 0.9210 6.17 92.90 95.96 0.9441
Journal 97.51 89.22 0.9318 2.22 97.15 89.32 0.9307
Date 99.85 96.89 0.9835 0.00 99.85 96.89 0.9835
Pages 99.90 98.54 0.9922 0.00 99.80 98.54 0.9917
Volume 98.53 97.65 0.9809 0.00 98.53 97.65 0.9809
Average 98.09 94.53 0.9626 2.22 97.86 96.27 0.9703

(c) Social Sciences
Author 99.35 95.26 0.9726 3.56 99.01 99.87 0.9044
Title 92.14 94.78 0.9344 5.89 91.17 98.43 0.9466
Journal 98.22 94.41 0.9628 2.05 97.05 94.99 0.9601
Date 99.57 97.01 0.9827 0.00 99.57 99.01 0.9827
Pages 99.65 98.45 0.9905 0.00 99.65 98.45 0.9905
Volume 98.67 98.66 0.9866 0.00 98.67 98.66 0.9866
Average 97.93 96.43 0.9716 1.91 97.52 97.90 0.9768

Block-Level Results

We now present results that show how correctly the blocks
were associated with their respective fields in our method.

Consider the set of citation strings we used for evaluating
the extracting process in a given domain. Let Bi be the set of
all blocks in the strings in this set which compose the values
of a metadata field mi. These blocks were used as references
to our block-level verification.

Now, let Si be the set of blocks associated with mi after
a given step of our method (e.g., matching or binding). The
precision and recall obtained with Equation 8 for these exper-
iments are presented in Table 2 for the CORA(a), the HS (b),
and the SS (c) domains. To compare the outcome of the first
two steps of our method, we separately present the results
obtained after the matching step and after the binding step,
which are cumulative. We also present the number of blocks
which were left unmatched after the matching step.

In the Methods, we argued that the matching step is the
main step of our approach. To verify this, note that on average,
less than 5% of the blocks are left unmatched for all sets of
citations. This occurs because any block that presents at least
one of its terms occurring on the knowledge base are matched.
However, this fact alone would be not enough to guarantee
the high precision and recall results obtained, which are due

to the suitability of the FF function (Equation 1) we have
proposed for the matching.

The results in Tables 2a to 2c also show that the bind-
ing step plays an important role in our method since it was
able to significantly improve the results of recall by keeping
precision levels very similar to the ones in the matching step.

Overall, there was a single case in which the matching
step was not able to distinguish with very high accuracy the
blocks from two distinct fields. This occurred for the fields
Title and Journal in the HS domain. This can be explained by
the large number of common terms between these two fields.

We should stress the high-quality levels achieved in CORA
even though this collection contains citations in various styles
and the fact that the knowledge base was relatively small in
size.

Field-Level Results

To demonstrate the effectiveness of the whole extraction
process with our method, we evaluate the extraction qual-
ity after the joining step, in which blocks are joined to
compose the values of fields. Here, instead of blocks, we
analyze for each field occurring in the citations if the val-
ues assigned by our method to this field are correct. This is
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TABLE 3. Field-level precision and recall for each field after the joining
step for the CORA (a), HS (b) and SS (c) domain.

Field Precision (%) Recall (%) F-measure

(a) CORA
Author 97.21 98.67 0.9793
Title 93.01 96.67 0.9480
Journal 93.45 91.5 0.9246
Date 96.01 90.01 0.9291
Pages 97.98 98.81 0.9839
Volume 100.00 99.14 0.9957
Tech 94.67 91.9 0.9326
Location 90.01 94.78 0.9233
Note 91.00 88.81 0.8989
Book title 93.16 91.73 0.9244
Editor 90.76 91.66 0.9121
Publisher 90.00 96.56 0.9316
Institution 92.15 91.11 0.9163
Average 96.28 95.8 0.9601

(b) HS Domain
Author 98.57 99.04 0.9880
Title 84.88 85.14 0.8501
Journal 97.23 89.35 0.9312
Date 99.85 99.50 0.9967
Pages 99.70 99.20 0.9945
Volume 96.41 98.75 0.9757
Average 96.11 95.16 0.9560

(c) SS Domain
Author 96.48 99.17 0.9781
Title 91.20 96.67 0.9386
Journal 97.99 93.68 0.9579
Date 99.57 97.01 0.9827
Pages 99.65 98.45 0.9905
Volume 98.67 98.66 0.9866
Average 97.26 97.27 0.9724

important especially for the Author field to check if the blocks
associated with this field were correctly joined (i.e., if terms
from the same author names were joined in the same field
value).

In this case, we redefine Equation 8 by considering Bi

the set of complete values of mi and Si the set of complete
values associated with mi by our method. Again, the Bi sets
were automatically obtained for all domains. The results are
shown in Table 3 for the CORA (a), HS (b), and SS (c)
domains. Note that precision and recall are defined here for
complete field values. Thus, if at least one block of the mi

value was not associated with mi, we consider that all the
mi value was incorrectly extracted.

From Table 3a to 3c, note that the high accuracy levels
reached after the matching and binding steps remain after
the joining steps. The exception was the F-measure value
for the field Title from the HS, which was around 0.85. A
closer look at the values of this field revealed a large over-
lap with the terms in the values of the Journal field in this
domain. Because of this overlap, some Journal blocks were
wrongly associated with Title in the matching step. This
can be observed by looking at the recall value for Journal
(89.32%) and the precision value for Title (93.7%) after the
matching step in Table 2b, which are relatively low. This

TABLE 4. Average citation-level precision and recall for citations after the
joining step.

Domain Precision (%) Recall (%) F-measure

Health Sciences 94.82 95.10 0.9496
Social Sciences 97.32 97.21 0.9726
CORA 92.14 94.78 0.9344

situation was propagated through the binding step until the
joining step.

Citation-Level Results

The final aspect we analyzed in our experiments is how
well each citation record was extracted by our method; that
is, we want to verify whether the fields composing each
record were correctly extracted. Note that while the field-
level results presented earlier involve all values from a given
field regardless of the citations in which they occur, we exam-
ine in this section the extraction results on a per-citation basis,
averaging the results.

To present these results, consider each reference set Bi as
the set of field values in a given citation record Ci. Now, let
Si be the set of field values extracted for Ci by our method.
Then, precision and recall are calculated using Equation 8.
In Table 4, we present the average of precision and recall
obtained in the experiments for all domains.

The values in Table 4 were obtained by taking into consid-
eration all field values occurring in each citation, which may
vary for each individual citation. These results demonstrate
that our method is able to deal with a variety of citation types,
without having to rely on a predefined set of citation styles.

In our final experiment in this section, we verify how
our method behaves when the size of the knowledge base
varies. The results of this experiment are presented in Figure
3, in which for the HS and SS domains we used an increas-
ing number of sample citation metadata records (from 50 to
10,000) and calculated the citation-level F-measure result-
ing from running the extraction process over each collection.
Note that in both cases, F-measure values quickly stabilize,
reaching over 0.95 with 3,000 sample citation records in the
knowledge base, and this value remains the same until 10,000
sample citation records. This shows that our method does not
require a large knowledge base to reach a good extraction
quality in the HS and SS collections we used. Again, we
were unable to perform this experiment with CORA due to
the small number of citations available in this collection.

Discussion

Although the experimental results we have presented here
demonstrate the high effectiveness of our proposed method,
the problem of citation extraction is still a challenge, mainly
due to some pathological cases that would prevent any
method from achieving a perfect result.

In Figure 4, we present two examples of real bibliographic
citations and their respective extraction results produced by
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FIG. 3. Performance of the citation extraction relative to the size of the knowledge base for the Health Sciences (HS) and Social Sciences (SS) domains.

FLUX-CiM. In the first citation, Figure 4a, one of the val-
ues of the field Author, “Pathology Review Committee,” was
misidentified in the extraction process as a value of field Title
since the term “Pathology” is typical of this field.

In the bibliographic citation presented in Figure 4b, it
is even hard for humans to correctly separate the author
names. We searched for other citations of the same paper
and found that the correct author values are “Clayton Lewis,”
“D. Charles Hair,” and “Victor Schoenberg.” Note that the
first value was represented distinctly from the other two.

Comparing FLUX-CiM and CRF

Experimental Comparison

We now present the results of an experimental comparison
we conducted between FLUX-CiM and CRF, a state-of-
the-art method for citation extraction. Note that the output
provided by CRF is slightly distinct from that provided by
FLUX-CiM, in the sense that values in multiple-valued fields
(e.g., author names) are not individually separated. Thus, to
ensure a fair comparison between the two methods, the results
we report here are expressed according to the same metrics
used in McCallum (2006). For this, we redefine Equation 8
by considering Bi as the set of correct values of a field mi and
Si as the set of values associated with mi by the extraction
method. Distinct from the field-level results presented earlier,
in this case, each of the multivalued fields (i.e., Authors) are
considered as a single-valued field (see Table 5).

For all three collections, we ran an implementation of pub-
licly available CRF (http://crf.sourceforge.net), which was
implemented according to McCallumImplement. To ensure
a fair comparison, the same set of citation records was used
to train the CRF model and to generate the knowledge base
in FLUX-CiM. Similarly, the same citation strings in the test
set were applied for both methods.

For the HS and SS collections, each result presented was
gathered after five complete executions; that is, in each execu-
tion, a training set for CRF, a knowledge base for FLUX-CiM,
and a test set for both methods were randomly generated. For
CORA, as in McCallum (2006), experiments were executed

TABLE 5. Comparative F-Measure results for CORA (a), Health Sciences
(b), and Social Sciences (c).

Field FLUX-CiM CRF t test (%) Wilcoxon (%)

(a) CORA
Author 0.9420 0.9940 – –
Title 0.9357 0.9830 2.00 2.00
Journal 0.9262 0.9130 1.00 1.00
Date 0.9566 0.9890 3.00 5.00
Pages 0.9567 0.9860 – –
Book title 0.9364 0.9370 – –
Location 0.9315 0.8720 1.00 1.00
Publisher 0.9250 0.7610 1.00 1.00
Others 0.9408 0.8940 1.00 1.00
Average 0.9390 0.9254 3.00 1.00

(b) Health Sciences
Author 0.9662 0.9548 4.00 2.00
Title 0.9956 0.9616 1.00 1.00
Journal 0.9371 0.8930 1.00 1.00
Date 0.9987 0.9657 2.00 2.00
Pages 0.9783 0.9647 – –
Volume 0.9995 0.9592 1.00 1.00
Average 0.9792 0.9498 1.00 1.00

(c) Social Sciences
Author 0.9954 0.9431 1.00 1.00
Title 0.9978 0.9714 1.00 1.00
Journal 0.9401 0.8889 1.00 1.00
Date 0.9984 0.9619 3.00 5.00
Pages 0.9318 0.9067 1.00 1.00
Volume 0.9720 0.9214 1.00 1.00
Average 0.9726 0.9322 1.00 1.00

CRF = Conditional Random Fields.

only once since the number of citations available in this
collection is too small to allow nonoverlapping executions.

For the HS and SS collections, we used 5,000 citations
for the knowledge base and for training the CRF, and 2,000
citations for the testing. For CORA, we used a knowledge
base with 350 citation records, the same number for training
the CRF, and then 150 citations to test both methods.

For all comparisons reported, we used the Wilcoxon
signed-rank test (Wilcoxon, 1945) and the Student’s t test
(Anderson & Finn, 1996) for determining if the difference
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FIG. 4. Examples of pathological cases in bibliographic citations from the Health Sciences (HS) (a) and Computer Science (CORA) (b) domains and their
respective extraction results.

in performance was statistically significant. In all cases, we
only drew conclusions from results that were significant at
least at a 5% level for both tests. Nonsignificant values are
omitted.

By observing the results presented in Table 5 note that in
all three distinct datasets, our method achieved higher results
than the CRF in most of the fields, according to both sta-
tistical tests. The better results achieved by the CRF in two
fields of CORA (boldfaced) can be explained by the limited
number of citation records in the knowledge base for this
collection. In the HS and SS collections, where larger sets of
citation records are available to test and generate the knowl-
edge base, FLUX-CiM performed better than did CRF for all
fields. These experiments demonstrate that even without any
user intervention to create a training set, FLUX-CiM achieves
better extraction quality than do CRFs.

Dealing With Different Citation Styles

As already discussed, one of the features we regard as very
important in FLUX-CiM is its flexibility in extracting from
citations regardless of the particular style used. This happens
because our extraction approach does not rely on patterns
encoding specific delimiters used in a particular citation style
but rather on features of the citation fields and their values.

To evaluate such a property, we performed a set of exper-
iments in which the test sets include citation strings with
distinct styles. These experiments simulate situations in
which citations are to be extracted from several scientific
papers from different sources with different citation styles.

In the experiments, test sets were built as follows. We take
citation strings from the HS and SS collections and generate
four test sets, such that set i contains 
N/i� citations format-
ted according to style i, where N = 2,000 and 1 ≥ i ≤ 4. Style
1 corresponds to the original citation style used in each collec-
tion. The other styles were generated by randomly changing
the implicit field delimiters and the relative order of the fields.

TABLE 6. Examples of the citations styles and final configuration of
each set.

Citation style example

1 Kerlikowske K, Orel SG, Troupin RH. Nonmammographic imaging.
Semin Roentgenol. 1993;28:231–241

2 231–241: Nonmammographic imaging. Kerlikowske K: Orel SG:
Troupin RH, 1993; 28. Semin Roentgenol

3 1993; Kerlikowske K; Orel SG; Troupin RH; Semin Roentgenol.
Nonmammographic imaging. 231–241: 28

4 Nonmammographic imaging: 1993, Kerlikowske K, 231–241, Orel
SG; Troupin RH. Semin Roentgeno

Set No. of citations per style No. of citations in the set

1 style 2,000 2,000
2 styles 1,000 2,000
3 styles 667 2,001
4 styles 500 2,000

By randomly generating citation styles, we aimed to simu-
late situations in which a previously unseen citation style is
deployed.

In Table 6, we present examples of the styles used (first
panel) and a summary of the final configuration of each test
set (second panel). For building a knowledge base for FLUX-
CiM and the training CRF model, we randomly took 5,000
citation records in their original citation style (i.e., Style 1)
from each respective collection.

The results of this experiment are presented in Table 7.
Note that the F-measure obtained with CRF decreases with
an increase in the number of citations styles. This happens
because the CRF model looks for specific features learned
from a single style that it was trained on. On the other hand,
with FLUX-CiM, the F-measure remains constant regard-
less of the number of different citation style used, thus
corroborating our claims about the flexibility of our method.
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TABLE 7. F-measure values achieved with different citation styles for the
Health Sciences (a) and Social Sciences (b) collections.

No. of styles FLUX-CiM CRF Wilcoxon (%) t (%)

(a) Health Sciences

1 0.9792 0.9498 1.00 1.00
2 0.9792 0.7065 1.00 1.00
3 0.9792 0.4033 1.00 1.00
4 0.9792 0.3567 1.00 1.00

(b) Social Sciences

1 0.9704 0.9322 1.00 1.00
2 0.9704 0.7586 1.00 1.00
3 0.9704 0.3867 1.00 1.00
4 0.9704 0.3199 1.00 1.00

Extraction Feedback

The experimental results we have presented thus far
demonstrate the high extraction quality and high levels of
flexibility achieved by FLUX-CiM; however, for this to occur,
it is very important that the underlying knowledge base cov-
ers a representative portion of the domain of interest. Indeed,
as discussed and demonstrated in this article, the size of the
knowledge base directly influences the quality of the extrac-
tion. On the other hand, there could be cases in which new
features must be incorporated to the knowledge base from
time to time to reflect a new trend found on the target domain.
For instance, the term “Bluetooth” was only recently incor-
porated in the vocabulary of the computer science domain.
Such a phenomenon also can occur for values of fields such
as venues and authors.

To cope with both requirements (i.e., having a significant
number of citations in the knowledge base and guaranteeing
the representativeness of these citations with respect to the
current state of the target domain), it would be necessary
to collect data from this domain (e.g., on the Internet) and
add this data to the knowledge base, as described earlier.
Although very simple, such a task would still require the
user’s intervention, which could become inconvenient in a
scenario in which autonomy is required.

In this section, we propose a solution to this problem by
directly incorporating the results of the extraction processes
to the knowledge base, a process we call Extraction Feedback,
which is illustrated in Figure 5. Consider a knowledge-base
K on a given domain D. Now, suppose we use FLUX-CiM
to extract a certain amount of citations from a set of sources
S, also on domain D. The Extraction Feedback consists of
taking the terms composing the data values extracted from S
for each field and updating the corresponding fields in K.

At a first sight, using the data extracted to directly update
the knowledge base could introduce a certain amount of noise
to it that could compromise the results of extraction processes
based on the updated knowledge base. However, as shown
earlier, FLUX-CiM achieves a good extraction quality even
with a small knowledge base. Thus, we argue that use of the
extraction outcome to perform the Feedback process can be
quite “safe” since the possible amount of noise is very low.

FIG. 5. Extraction Feedback.

To corroborate this claim, we present the results of exper-
iments performed with the Extraction Feedback process.

In the experiments reported next, we aimed at showing
the effectiveness of the Extraction Feedback process to auto-
matically update and expand the knowledge base without
compromising the extraction quality.We have conducted sim-
ilar experiments in the HS and SS domains since these are the
domains for which we have a large set of available citations.
We analyzed the behavior of our method using Extraction
Feedback in three different scenarios. First, we started with
a knowledge base constructed using only 50 citation records,
and then executed the extraction task into a source contain-
ing 1,000 citation strings. For each run, we evaluated the
extraction quality in terms of F-measure. We also performed
experiments starting with knowledge bases built with 1,000
and 3,000 citation records. In all cases, citation records for
the initial bases and for the automatic Feedback were ran-
domly selected. Additionally, we ran each experiment five
times. The results of the experiments are presented in Figure
6, in which each point represents the average of the values
obtained in each of the five runs.

In Figure 6, each graph shows the quality achieved by
FLUX-CiM in terms of F-measure as a function of the num-
ber of citation records used for updating the knowledge base
according to the automatic Extraction Feedback process.

This quality is compared with the quality level that would
be achieved if the knowledge base were manually updated
with same number of totally correct citations records. For this,
we took the corresponding correct citation records and added
them to the knowledge base. This represents an upper bound
for the quality that can be achieved after using the Feedback.
The straight line in these graphs represents the extraction
quality if the extraction process were executed in the whole
test set; that is, if the FLUX-CiM had been used to extract
10,000 citation strings with only the initial knowledge base.

Note that in all distinct scenarios, the automatic Extraction
Feedback process with 9,000 citation records or more reaches
the upper bound quality levels. This means that even when
starting with a small set of citation records in the knowledge
base, it is possible to use the Extraction Feedback process in
a automatic fashion without user intervention to reach high-
quality results. Furthermore, even when starting with a small
knowledge base, it is better to perform the extraction task in
small test sets, then in the whole citation strings set available.
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FIG. 6. Behavior of the citation extraction performance with the Extraction Feedback the Health Sciences (HS) and Social Sciences (SS) domains.
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In the graphs of Figure 6c to f, in which the initial knowl-
edge bases were built using 1,000 or 3,000 citations records,
the automatic Feedback process brings the same quality
improvement that would be obtained with manual perfect
updates to the knowledge base.

These results corroborate our claim that even if our Extrac-
tion Feedback may introduce some errors in the knowledge
base since the extraction quality obtained by FLUX-CiM is
not perfect, it is good enough to not compromise extrac-
tion processes carried out after the Feedback. This indicates
that updating the knowledge base can be accomplished
automatically, with no user intervention.

Conclusions and Future Work

In this article, we have proposed a novel method, FLUX-
CiM, for extracting components (e.g., author names, article
titles, venues, page numbers) from bibliographic citations.
Unlike previous methods in the literature, our method does
not rely on patterns encoding specific delimiters used in a
particular citation style. This feature yields a high degree of
automation and flexibility, and allows FLUX-CiM to extract
from bibliographic citations in any given citation style, as
demonstrated by experiments in this article. FLUX-CiM
relies on a knowledge base automatically constructed from
an existing set of sample metadata records of a given domain
(e.g., CORA, HS, SS, etc.). These records usually are easily
available on the Web or other public data repositories.

Our method differs from related knowledge-based
approaches that rely on manually built knowledge bases
for recognizing the components of a citation. In addition,
FLUX-CiM works differently from previous methods based
on models learned from user-driven training. The extraction
process in our method is based on (a) estimating the probabil-
ity of given term found on a citation string to occur as a value
of a given citation field according to the information encoded
in a knowledge base, and (b) the use of generic structural
properties of bibliographic citations.

The effectiveness and applicability of our proposed
method were demonstrated by experiments for extracting
information from bibliographic citations in scientific papers
of three distinct domains: HS, CORA, and SS. The experi-
ments in this article show that FLUX-CiM obtains precision
and recall levels over 95% for the fields present in the set
of citations, and an average recall of over 94% for the fields
present in each citation.

We also performed an experimental comparison between
FLUX-CiM and CRF. The results of these experiments
demonstrated that even without any user intervention to create
a training set, FLUX-CiM achieves better extraction quality
than does CRF.

The flexibility of FLUX-CiM was experimentally veri-
fied by means of a set of experiments in which the test sets
include citation strings with different styles. The results of
these experiments corroborate our claim that the extraction
quality remains steady regardless of the number of different
citation styles used.

Finally, we proposed a process, Extraction Feedback, for
automatically updating and expanding the knowledge base by
directly incorporating the results of an extraction process on it
carried out by FLUX-CiM. We have shown that such a strat-
egy can be used to achieve good extraction results, even if
only a very small initial sample of bibliographic records
is available for building the knowledge base. Despite the
introduction of some errors in the knowledge base by this pro-
cess, the quality of the results obtained shows that this does
not compromise extraction processes carried out after the
Feedback. In effect, we have demonstrated that with FLUX-
CiM, updating the knowledge base can be accomplished
automatically, with no user intervention.

For future work, we intend to investigate different match-
ing functions that might better distinguish citation fields that
have common values to describe their domains (e.g., author’s
name and editor’s name). This kind of function could make
our method more general and robust.

An interesting strategy to achieve higher extraction results
in more complex types of data would be the use of our method
to automatically discover the implicit style of the data and
then use this property as evidence in, for example, another
supervised extraction process.

We also may investigate the applicability of our method for
extracting citations form sources other than citation lists from
papers. For instance, it seems interesting to have a mecha-
nism to automatically populate a digital library with metadata
directly from Web sites of recent conferences or from the
headers (title, authors, abstract) of the papers published in
these venues.
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