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ABSTRACT
In this paper we present a proposal for the implementation
and evaluation of a novel method for automatically using
data-rich text for filling form-based input interfaces. Our
solution takes a text as input, extracts implicit data values
from it and fills appropriate fields. For this task, we rely on
knowledge obtained from values of previous submissions for
each field, which are freely obtained from the usage of the
interfaces. Our approach, called iForm, exploits features re-
lated to the content and the style of these values, which are
combined through a Bayesian framework. Through exten-
sive experimentation, we show that our approach is feasible
and effective, and that it works well even when only a few
previous submissions to the input interface are available.

1. INTRODUCTION
The web is abundant with applications where casual users

are required to enter data to be stored in databases for fur-
ther processing. The most common solution deployed in
these cases is to design form-based interfaces which contain
multiple data input fields, such as text boxes, radio buttons,
pull-down lists, check boxes and other input mechanisms.
Unlike typical search forms, these web input forms usually
have a larger number of fields.

Although these interfaces are popular and effective, in
many cases interfaces that accept data-rich free text as in-
put , i.e., documents or text portions that contain implicit
data values, would be preferable. Indeed, in many cases the
data required to fill the form fields could be taken from text
files in which they are already available. For instance, a job
applicant may use data taken from a resume text file to fill
several fields of forms in many different job search sites. ma
The alternative approach we propose in this paper consists
of deploying a system that receives a data-rich free text input
(e.g., an offer or ad), such as the one illustrated in Figure 1,
and recognizes implicit data values occurring in it that can
be used to appropriately fill out the fields in a form based
interface. For practical purposes, the user could check if
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the fields were correctly filled by the system and make any
necessary corrections before inserting the data into the un-
derlying web database.

Figure 1: An example of car ad in free text.

The problem we address here is common on popular auc-
tion sites, such as eBay and Amazon.com, which extensively
use form-based interfaces to allow users to register offers.
In fact, there may be distinct form-based interfaces with
specific fields depending on the product being offered. For
instance, in the experiments presented in this paper, we
consider distinct interfaces corresponding to the categories
“cars”, “mobile phones” and “books” from a popular Brazil-
ian auction site TodaOferta.com, which receives thousands
of new offers each day and usually contains about half a
million active product offers. Interestingly, as some of these
sites (e.g., eBay and TodaOferta) also allow offers to be en-
tered using generic free text descriptions, users often avoid
using form-based interfaces. However, the lack of struc-
tured information obtained through form-based interfaces
may prevent the proper use of services based on searching,
mining, recommendation and integration over offers.

More recently, on-line services such as Craiglists, Google-
base and Freebase were built to allow users to share and ex-
change data on a variety of domains (e.g., cooking recipes,
sports statistics, etc.). These services maintain databases
that receive data directly from web users, mainly by means
of multi-field input forms1. Such services can also bene-
fit from our proposed approach to help users in populating
their databases in a simple and intuitive way.

We observe that the problem of filling out web forms
presents particular restrictions not usually present in a tra-
ditional information extraction (IE), mainly because, in this

1Other ways are also available, but they also require struc-
tured data to be provided.
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setting: (1) Examples of text segments of interest often need
to be manually labeled for training. In the form filling prob-
lem this training process may not be feasible, since a large
diversity of segments is expected. Thus labeling a represen-
tative set of text inputs would require a huge effort; (2) It is
usually necessary to label many text segment from the input
text, even spurious ones, e.g., those that do not contain any
information, but that play the role of delimiters around the
data of interest. In the form filling problem, such delimiters
are not available from previous user inputs of the form-based
interface, which contain only field values themselves.

Our approach to solve the form filling problem, which
we call iForm, consists of automatically selecting segments
from the input data-rich text and associating them with the
appropriate fields in the form. With this approach, users
provide a free text document or portions as input, and iForm
automatically extracts values for filling the form relying on
information about the previous values assigned to each field.
For simplicity, we refer to the user free text document or
portions as input text from now on. Users may want to
verify the form filled by our method, make corrections and
then proceed with the request submission. After that, the
new assigned values are stored and used as extra evidence
when new input texts are provided by users.

As our experiments show, iForm works well even when
only a few previous submissions are available. This is ac-
complished by using a model that estimates the probability
of each field in the form given the input text based on the
values previously used or filling the form, the tokens (words)
composing them and also their wording style. An interesting
property regarding our strategy for estimating such proba-
bilities is that it allows us to correctly identify segments in
the input text that may not correspond to values previously
entered in the field, as long as these segments include terms
typically found in the values of this field or have a format
usually associated to the values previously used in that field.

Consequently, iForm is flexible enough to deal with any
text style (e.g. punctuation, font case) or structure (e.g.
order of implicit values). In fact, our approach does not rely
on features of the text, but rather in features of fields along
with their values. We also show in this work how to deal
with constraints imposed by a particular interface, such as
selecting an item in pull-down lists or selecting options in
check boxes. For developers using our approach, no extra
effort is required beyond designing form-based interfaces.

Through extensive experimentation on real datasets, we
show that our approach is feasible and effective, outperform-
ing the best baseline we found in the literature. Experiments
show that iForm has a good performance even when only a
few previous submissions to the input interface are available.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents an overview
of the problem addressed here. Section 4 describes the de-
tails of our proposed method. Section 5 reports and ana-
lyzes experimental results. Finally, Section 6 presents our
final remarks, conclusions and suggestions for future work.

2. RELATED WORK
Numerous approaches have addressed the problem of pro-

viding more intuitive alternatives for users accessing web
databases than form-based interfaces. Solutions range from
keyword-based queries to natural language query specifica-
tions. One prominent approach is translating keyword-based

queries submitted by users into form-based queries [5] or
SQL-like commands [1, 16]. Another well-studied problem is
how to provide natural-language interfaces for databases [14]
and service requests [2] (e.g. requesting an appointment
with a dermatologist). While in these systems the user in-
tentionally types a query composed with a handful of mean-
ingful keywords or small phrases, iForm accepts as input
larger portions of text, such as the one in Figure 1. Such
portions of text potentially have meaningful data for filling
a form, but they were not necessarily composed to this end.
Thus, several useless strings are expected to occur. In ad-
dition to this, while these systems only support query spec-
ifications, our approach is especially suitable for the prob-
lem of populating web databases which are only accessible
through form-based interfaces.

Improving the way users deal with web forms is an im-
portant practical problem that has been an active research
topic in the recent literature. For instance, while many web
browsers provide a list of suggested values for a given field
the user is typing in, research initiatives have been carried
out to correctly predicting these values based on machine
learning techniques [3]. Such techniques apply to fields that
are common in many forms (e.g., name, zip code, etc.) used
by a user or by a community of users. This problem departs
from the problem we address in iForm in two main aspects:
(1) in iForm, input comes from a preexisting text and not
from a user typing values; (2) iForm aims at automatically
filling several fields of forms from a given domain, rather
than a few common fields occurring in several forms. An-
other example, is the USHER system [7], used to automati-
cally adapt the form design according to user experience. As
in iForm, this is accomplished by learning from field values
previously submitted.

Information Extraction methods can be used to automat-
ically “fill-in” input forms from unstructured data such as
Web documents or email. Kristjansson et al [12] proposed
an interactive method for filling forms based on CRF [15,
13], which we use here as a baseline and will be referred
to as iCRF. Their interactive information extraction system
assists the user in filling in form fields while giving the user
confidence in the integrity of the data. The user is presented
with an interactive interface that allows both the rapid ver-
ification of automatic field assignments and the correction
of errors. In cases where there are multiple errors, their sys-
tem takes into account user corrections, and immediately
propagates these constraints so that other fields are often
corrected automatically. They proposed two extensions to
allow the interactive filling of forms when using CRF: a con-
strained Viterbi decoding which finds the optimal field as-
signments consistent with the fields explicitly specified or
corrected by the user; and a mechanism for estimating the
confidence of each extracted field, so that low-confidence ex-
tractions can be highlighted.

Like in iForm, recent work [15, 9] has proposed that fea-
tures can be learned from previously existing data, coming
from databases or reference tables. This reduces the manual
training labor. However, differently from iForm, in such ap-
proaches local context-related features (value ordering and
positioning) are considered, since they assume values to ap-
pear in contiguous positions according to ordering patterns.
Such patterns can be considered as fixed, or can be learned
both previously from training instances [15] or on-demand
from test instances [9].
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In the form filling problem, we consider a population of ca-
sual Web users using distinct text portions for filling forms,
what makes finding ordering patterns almost impossible.
For instance, in auction web sites (e.g., eBay), a large num-
ber of casual users write product offer descriptions in di-
verse formats with a few values of interest scattered through
the text, with no particular order, and mixed with other
non-related strings. Under such conditions relying on local
context-related features is unfeasible and hardly effective,
given the expected diversity of styles and formats. Thus,
we only rely on information about input values entered for
each field of the target form on previous submission made
by the users. As we show through experiments, this strategy
is very effective, given the complexity of the problem.

As detailed through the paper, iForm assigns segments to
fields based on the similarity between these segments and the
set of known values of the fields. Similar strategies have been
successfully applied in a number of problems in web data
management, and, in particular in instance-based schema
matching [18]. In our case, however, we tackle the additional
problem of determining which, among all possible segments
in text, represent suitable values for the field of a given form.

3. THE FORM FILLING PROBLEM
The problem we face in this work is automatically fill-

ing out the fields of a given form-based interface with val-
ues extracted from a data-rich free text document, or por-
tions of such documents. In particular, we identify two sub-
problems: the problems of (a) extracting values from the
input text and (b) filling out the fields of the target form
using them.

Free text documents are treated as sequences of tokens
t1, . . . , tN , representing individual words or punctuation.
The extraction task consists of identifying segments from
the free text document, i.e., a sequence of contiguous to-
kens, which are suitable values for fields in the form. A
segment sij is composed by tokens from ti, . . . , tj , such that
i ≤ j, i ≥ 1 and j ≤ N . A valid set of values extracted
from the input text must follow two conditions: (1) only a
single segment can be assigned to each field in the form and
(2) every extracted segment must be non-overlapping, i.e.,
there are no extracted segments sab and scd for a < c such
that b ≥ c.

Most of the challenge of the form filling problem is re-
lated to subproblem (a), since suitable values are scarcely
embedded in the text with other non-related strings. Fur-
thermore, no particular format or order can be assumed for
these values.

4. THE IFORM APPROACH
The iForm approach for dealing with the form filling prob-

lem consists of taking candidate segments from the input
text and then estimating the probability of a field given
each segment.

Consider an input text I, which is composed of N > 0
tokens (words). Let Sab be a segment, i.e., a sequence of
tokens in I that includes tokens ta, ta+1, . . . , tb−1, tb (0 <
a ≤ b ≤ N). We consider Sab as a suitable value for a field
f if the probability of the field given this segment is above
a threshold ε2. Considering L as the maximum segment
length, there are N ∗ L −

∑L−1
i=1 i segments in a text with

2In all of our experiments, we performed a previous training
and selected ε = 0.2.

N tokens3. As latter detailed, iForm deploys a dynamic
programing strategy to avoid recomputing the probabilities
for all pairs of segments and fields.

The main idea behind iForm is to rely on information
about previous values used for each field of a form to fill
this form when a new text is given as input. We consider
two types of features from these values: the values them-
selves and the tokens composing these values, which we call
content related features; and the style (e.g., capitalization,
punctuation, etc.), which we call the style related feature.
We stress that no features from the input tests are consid-
ered. The style feature requires a more detailed explanation.

Let SVj be the set of previous values entered for a field
Fj . We automatically learn a Naive Hidden Markov Model
SM(Fj), which we call Value Style Model, that captures the
wording style of the values in SVj . This model is similar to
the inner HMM used in [4], also used to capture the wording
style of sequences.

For this, we first tokenize each value of SVj on white-
spaces. Using a taxonomy proposed in [4], we encode this
value as a sequence of masks that represent the styles of
characters found, which we name as symbol masks sequences.
For example, the value “Peanuts inc.” of the “Company”
field is encoded as “[A-Z][a-z]+ [a-z]+.”, i.e., string that
starts with an uppercase letter, represented by the symbol
mask “[A-Z]”, plus a sequence of one or more lowercase let-
ters, symbol mask “[a-z]+”, followed by a lowercase word,
symbol mask “[a-z]+” that finishes with a dot. This pro-
cess is repeated for all known values of a given field. Notice
that the symbol mask sequences can be considered as a style
representation of values entered for each field.

A graph representing a Value Style Model SM(Fj) is gen-
erated using the encodings of all symbol mask sequences
found in values previously entered for field Fj . In SM(Fj),
each node represents a symbol mask that occurred in the val-
ues of SVj . An edge, ordered pair 〈nx, ny〉, between nodes
nx and ny is built if nx is followed by ny in the symbols mask
sequences that were encoded from SVj . Thus, we can now
refer to each symbol mask sequence as a path of SM(Fj).
The first node of the path that represents a value in SM(Fj)
is marked as an initial node in SM(Fj) and the last node of
such path is marked as a final node of SM(Fj). Using the
Maximum Likelihood approach [4] the weight of each edge in
SM(Fj) is computed as:

w(SM(Fj), nx, ny) =
# of pairs 〈nx, ny〉 in SM(Fj)

# of pairs 〈nx, nz〉, ∀nz ∈ SM(Fj)

We then use the paths found in the sequence models of
fields as information to compute style related probabilities
of a given segment, as explained in the next section.

4.1 Probability of a Field given a Segment
Our approach assigns text segments to fields using three

distinct features, each one providing independent evidence
about how suitable is each possible assignment. In order
to select the final assignments between text segments and
fields, we need to combine the results of these three dis-
tinct features. We have considered several alternatives for
such combination, including the use of machine learning ap-
proaches, such as SVM [11], Genetic Programming [10], lin-
ear combination of values and the use of a Bayesian Network

3In our experiments L is no greater than 10
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approach. The use of machine learning is certainly an at-
tractive alternative, but has the disadvantage of requiring
a training collection, which would hamper the use of iForm
in practical applications. The linear combination approach
has provided fairly good results, but the quality of the as-
signments was a bit worse than the one obtained by the
Bayesian Network approach. Further, the Bayesian Network
approach has the advantage of providing a quite simple and
flexible formalism to model the combination problem. This
formalism was also successful when applied in a scenario
quite similar to our problem [17]. Thus in this article, we
focus only on this latter alternative.

We model the computation of the probability of field fj
given a segment Sab through a Bayesian belief network model
similar to the one proposed by Ribeiro-Neto et al [17, 6] for
ranking documents in search tasks.

Our Bayesian network provides a graphical formalism for
representing the probability model we develop allowing for
a better visualization of how the features we consider lead
to the final probability of a segment given a field. For the
interested reader, an illustration of our network is presented
in Figure 4, Appendix A.

Segments and fields of a form are represented in this net-
work by tokens, complete values and styles associated to
them. Node Sab on the top represents a segment from the
input text. On the bottom, each node Fj models a field of
the form being filled.

Nodes V1 to Vq represent the distinct values previously
submitted to the fields, nodes from T1 to Tw model the to-
kens that appear in these values, and nodes P1 to Pr repre-
sent each of the distinct symbol mask sequences found when
processing previously entered values of all fields. Vectors v,
t and p are used to refer to any of the possible states of
the root nodes from V1, . . . , Vq, T1, . . . , Tw and P1, . . . , Pr,
respectively.

Nodes from FV1 to FVN model the probability of each
field from F1 to FN , respectively, given the occurrence of a
value in the segment Sab (i.e., the entire string that repre-
sents the segment). Analogously, FT1 to FTN model the
probability of fields given the occurrence of a set of dis-
tinct tokens found in the segment, and nodes from FP1 to
FPN model the probability of fields, given the occurrence
of a path from the Value Style Model matching the sym-
bol mask sequence of the segment. Information available in
these nodes is combined through an or operator to compute
the final probability of each field given the segment Sab,
which are modeled by nodes from F1 to FN .

Each node X of the network is associated to a binary ran-
dom variable also denoted by X. For instance, node Sab is
associated to the binary random variable Sab. In this nota-
tion, it should always be clear whether we are referring to
the segment, to the node in the network, or to its associated
binary variable. For any variable X in the model, we say
that it is 1, denoted by x, to indicate that node X is on
(active).

4.1.1 Probabilities using Content Related Features
Following the our Bayesian network described above, we

take the information provided by the field description to
compute the probability P (ftj |sab), i.e., the probability that
the node FTj is on given that the node Sab is on. By using
the model proposed in [17], it can be stated that:

P (ftj |sab) = P (ftj |t) P (sab|t) P (t) (1)

where t is the state of token root nodes for which the ac-
tive tokens are exactly those in the segment Sab and P (sab|t)
and P (t) are set to 1. We need now to explain how to com-
pute the value P (ftj |t), which should be related to the like-
lihood of each token present in the segment Sab occurring
in the field Fj represented by node FTj . We model such
probability as:

P (ftj |t) = η
∑

τ∈tokens(t)

freq(τ, Fj)∑
f∈F

freq(τ, f)
(2)

where the function tokens(t) returns the set of tokens
related to the active nodes in t, i.e., the tokens that occur
in the segment Sab. Fj is the field associated to the node
FTj . F is the set of all fields present in the form. Function
freq(τ, f) gives the frequency of token τ for field f . Thus,
we estimate the probability of each token given a field Fj
dividing the frequency of τ in the previous values entered
by users for Fj by the frequency of τ in all fields of the
form. The intuition behind this formulation is that the more
concentrated the previous occurrences of a term are in a
field, the higher the likelihood of this field being related to
the term.

Finally, η is a normalizing constant [17], whose value is
set to 1/max (|Sab|, avg(Fj)), where |Sab| is the number of
words in Sab and avg(Fj) is the average number of words
in the values entered as input for the field Fj in previous
user interactions with the form. Thus, segments with a
length smaller than the average number of tokens of the
field are penalized. This ensures that the extracted values
will present a length compatible with the typical values in
their respective fields.

As it can be seen from Equation 2, the computation of
the values of P (ftk|sij) for every possible segment leads to
a redundant computation of several probabilities which can
be avoided by using dynamic programming.

Considering Equation 2 without the normalization con-
stant (i.e., only the sum of token probabilities), we can de-
fine mpij , the matrix containing the probability of a field
ftk given segment sij as follows:

Let mpij = P (ftk|sij), the following recurrence can be
used to compute this probability:

mpij =

{
P (ftk|sij) i = j
mpi(j−1) +mpjj i < j

(3)

Our dynamic programing algorithm for solving this equa-
tion first computes the simplest case, that is, elements mpij
such that i = j. The algorithm then computes elements in
the first row from left to right, and proceeds to the follow-
ing rows until all elements in the matrix are defined. This
process is repeated for the matrices of each field. Finally, we
apply the normalization component of Eq. 2 to each element
in every matrix in order to calculate the final probability
values.

Following our bayesian network , we also compute the
value of P (fvj |sab) as:

P (fvj |sab) = P (fvj |v) P (Sab|v) P (v) (4)

where v is a state where the only active node is the one
associated to the value found in Sab, P (sab|v) and P (v) are
set to 1, and P (fvj |v) is computed analogously as P (ftj |t),
but now comparing the frequencies of values in the fields,
instead of comparing frequency of tokens.
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4.1.2 Probability using Style Related Feature
Finally, we also compute the value of P (fpj |sab) as:

P (fpj |sab) = P (fpj |p) P (sab|p) P (p) (5)

where p is a state where the only active node is the one
associated to the mask sequence derived from the segment
represented by Sab, which is generated as it was done for
deriving symbol mask sequences from each value field. We
define the prior probabilities P (p) and P (sab|p) analogously
as P (t) and P (sab|t), setting them to 1.

We can now define and compute P (fpj |p) as the result of
Value Style Model of Fj when processing the path associated
to segment Sab:

P (fpj |p)=


0 if SM(Fj) does not recognize path(p)∑
〈nx,ny〉∈path(p)

w(SM(FJ), nx, ny)

|path(p)| otherwise

(6)

where path(p) returns the path from the Value Style Model
SM(Fj) associated to state p, which corresponds to the
symbol mask sequence of Sab. The Value Style Model of Fj
then processes path(p). The result will be zero if path(p)
is not recognized by SM(Fj), i.e., if it is not present in
SM(Fj) or it does not start with a starting node or does not
finish with a finishing node of SM(Fj). Otherwise, SM(Fj)
intuitively verifies the likelihood of the sequence following
the same wording style of the known values for this field by
computing the average weight of edges followed by path(p).

4.1.3 Putting all Probabilities Together
The final conditional probability P (fj |sab) can now be

computed using a disjunctive operator or over probabilities
derived from each feature. As in [6], a disjunctive operator
or was used because the two content-related features provide
a high confidence individually. This means that when one
of these probability values is close to 1, the likelihood of
segment Sab being a correct value for Fj is extremely high.

On the other hand, we verified through experiments that
style is less precise than the content-related features. In-
deed, the style information is helpful when token and value
features fail to match some segments to a given field. Be-
cause of this, we decided to use the style information as part
of a refining process.

Thus, the mapping process, described in the next section,
uses these probabilities in two phases, and the style feature
is not taken into account in the first phase. Thus, the final
probability for the first phase is accomplished by taking only
tokens and values into account, as follows:

P (fj |sab) = 1− (1− P (ftj |sab))× (1− P (fvj |sab)) (7)

If style is taken into account, information from the set of
sequence models has to be added to the computation. In
this case, the resulting formula is:

P (fj |sab) = 1− (1− P (ftj |sab))×
(1− P (fvj |sab))× (1− P (fpj |sab)) (8)

4.2 Mapping Segments to Fields
Let Cj be the set of segments Sab such that P (fj |sab)

is above threshold ε. We say that Cj is a set of candidate
values for field Fj .

We aim at finding a mapping M between candidates val-
ues and fields in the form-based interface with a maximum

aggregate probability, such that (1) only a single segment
is assigned to each field and (2) the selected segments are
non-overlapping, i.e., there are no segments Sab and Scd for
a < c in the mapping such that b ≥ c. This is accomplished
by means of a two-phase procedure as follows.

In the first phase, we begin by computing the candidate
values for each field Fj , based only on content-based fea-
tures, i.e., using Eq. 7. Let I be a set composed by the
union of the sets of candidate values Cj for all fields Fj . We
refer to I as the initial mapping, which contains segment-
field pairs 〈Sab, Fj〉. We say that two pairs in I are in con-
flict if they violate any of the conditions above. Hence, the
problem is finding a subset of value-field pairs in I without
conflicts whose aggregate probabilities are maximum.

Finding the optimal solution for this problem requires as-
sessing all possible subsets – an exponential number. In
practice, we use a simple greedy heuristic to find an approx-
imate solution. First, we extract the pair with the highest
probability from I and verify whether it presents conflict to
any pair inM or not. If such pair is non-conflicting, we add
it into the final mapping. We repeat this process until every
pair in I is extracted. This ends the first phase.

In the second phase, if any field remains not mapped to
a segment, we use the probabilities derived from the style-
related features to try to find further assignments, using
equation Eq. 8 to compute the probability of each field given
each segment. We then repeat the mapping process, but now
considering only pairs of segments and fields that were not
mapped in the first phase.

We adopted the two phase mapping after verifying through
experiments that style is less precise than the other two fea-
tures adopted. On the other hand, it is still interesting to
use style information when token and value features fail in
matching some segment to a given field. Thus, we decided
to use the style information as part of a refining process,
which is performed in the second phase of the mapping.

4.3 Filling Form-based interfaces
The last step in our approach consists of using the final

mappingM to fill out the fields of the form-based interface.
In the case of text boxes, we simply enter each mapped

text segment as a value into its corresponding field. For
check boxes, we set true for fields that were mapped in M
and false for other check boxes. Since extracted values are
rarely equal to items in pull down lists, this type of field
requires more work as we discuss in the following.

In the case of pull-down lists, we aim at finding an item
such that its similarity with the extracted value is maximum.

We measure this similarity by using a “soft” version of the
well-known cosine measure, named softTF-IDF [8]. Unlike
the traditional cosine measure, softTF-IDF relaxes the re-
quirement that terms must exactly match and yields better
results in our problem. The softTF-IDF model also assesses
the similarity between terms by using a similarity measure
for strings s. In this way, given a value A and a pull-down
list item B, we define close(θ,A,B) as the set of term pairs
(a, b), where a ∈ A and b ∈ B, and such that s(a, b) > θ
and b = arg minb′∈B s(a, b

′); i.e., b is a term in B with the
highest similarity to a.

The similarity between a value A and an item B in a
pull-down list is defined as follows.

soft(A,B) =

∑
(a,b)∈close(θ,A,B)

w(a,A) · w(b, B) · s(a, b)√ ∑
a∈A

w(a,A)2 ·
√∑
b∈B

w(b, B)2
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where w(a,A) and w(b,B) are the weights of terms a and
b related to the value A and item B, respectively. w(a,A)
returns 1 if a occurs in A or 0, otherwise. For computing
w(b,B) we consider the inverse frequency of term b in the
pull-down list, i.e, NL/freq(b, L), where NL is the number
of items in the pull-down list L and freq(b, L) is the number
of values in L containing term b.

5. EXPERIMENTS
In this section, we report the results of experiments we

have conducted with iForm on tasks of automatically filling
form-based web interfaces. In all experiments performed
here we simulate a real form-based web interface where each
data-rich free text document is submitted at a time. Users
manually verify its results and, if needed, correct minor er-
rors. After that interaction, the submission will be com-
pleted and new added values will be considered when pro-
cessing new submissions from this point on. Notice that
we evaluate the system according to the errors produced on
each iteration. In all cases there is no intersection between
the sets of test submissions and the set of previously submit-
ted documents. The details on all datasets used and their
sources are presented in Appendix C.

To evaluate the results of our experiments we have used
the well-known metrics precision, recall and f-measure. The
detailed definition of these metrics are presented in the Ap-
pendix B.

Prior to these experiments, we performed an evaluation
of the sensibility of iForm with respect to the threshold ε,
which is presented in Appendix D. Based on this evaluation,
we use ε = 0.2 in all the experiments here presented.

In the first experiment, we tested our method with multi-
typed web forms for submissions of Short Movie Reviews,
Car offers, Cellphone offers and Book offers. Next, we eval-
uated, in turn, how the number and the coverage of the pre-
viously submissions impacts on the performance of iForm.

Finally, experiments using a Jobs postings dataset were
conducted for comparing iForm with a solution previously
proposed to interactively fill forms [12], which is referred
to as iCRF in our experiments. As it was already men-
tioned, iCRF is a method for interactive form filling based
on CRF [15, 13], the current state of the art in information
extraction.

5.1 Experiments with multi-typed web forms
To evaluate iForm within typical different form-based in-

terfaces from distinct websites, we tested our approach with
submissions from Movies Reviews, Car offers, Cellphone of-
fers and Book Offers. A detailed description of the data
sources we have used in this experiment is presented in Ap-
pendix C.

To save space, we grouped the results by the type of each
field, i.e., text box, check box or drop-down list, according
to their occurrence in each web form. The results are pre-
sented in Table 1 by means of field-level and submission-level
precision, recall and F-measure.

As we can notice, iForm achieved high quality results in
all datasets. In the case of car offers, as shown in Table 1
(Cars) the quality of the form filling task was almost the
same for the text box fields and the check box fields.

Much better results were obtained for the case of cellphone
offers, in which the F-measure average reached above 0.90,
as shown in Table 1. As a consequence, submission-level f-

Domain Type of Field # Fields P R F

Movies
Text Box 4 0.74 0.69 0.71

Submission 0.73 0.67 0.69

Cars

Text Box 5 0.78 0.73 0.76

Check Box 30 0.79 0.79 0.79

Average 0.79 0.78 0.79

Submission 0.77 0.73 0.75

Cellphones

Text Box 2 0.89 0.69 0.78

Check Box 35 0.94 0.94 0.94

Average 0.94 0.93 0.93

Submission 0.96 0.94 0.95

Books 1

Text Box 4 0.88 0.67 0.76

Drop Down 1 0.96 0.96 0.96

Average 0.90 0.73 0.80

Submission 0.89 0.67 0.76

Books 2
Text Box 4 0.72 0.54 0.62

Submission 0.74 0.55 0.63

Books 3
Text Box 2 0.73 0.55 0.63

Submission 0.70 0.56 0.62

Books 4
Text Box 3 0.85 0.56 0.68

Submission 0.75 0.55 0.63

Table 1: Results for multi-typed web forms.

measure result for this dataset was 0.95, which means that
on average, more than 90% of each submission was correctly
entered in the web form interface.

A detailed inspection on the offers entered by users in this
interface, revealed that the values available on these offers
are usually more uniform than the values of car offers and
movie reviews. This explains the excellent results obtained
by iForm and corroborates our claims regarding the frequent
reuse of data-rich texts for providing data to fill form-based
interfaces on the web.

In the case of the movie dataset the inspection of the
text inputs entered (see Appendix C) revealed a large de-
gree of ambiguity, since it is very common, for instance, to
have actors that are directors and directors that are also
actors. As well as this, movie titles contain ordinary words
that appear within reviews not necessarily composing the
title (e.g., “Bad Boys”) and each review itself sometimes
presents more than one movie title. In addition, names and
titles that are entirely composed by terms not known from
previous submissions frequently appear. In such cases, the
style features play an important role. All these shortcomings
make this dataset a real challenge. Similar difficulties were
found in Books datasets. Despite this, iForm presented good
results. As shown in Table 1, precision levels are above 0.7
in all cases, and submission-level f-measure results for these
datasets are above 0.6.

5.2 Number of previous submissions
In this experiment we verify how the performance of our

method behaves when the number of previous submissions
varies. The result of this experiment is presented in Figure 2,
in which for each dataset, we used an increasing number of
submissions, from 500 to 10000, and calculated the average
submission-level f-measure resulting from running the form
filling process over each collection.

As it is shown in Figure 2, for the Movies and Books 1
datasets, the quality achieved by iForm increases propor-
tionally with the number of previous submissions4.

In the cases of the Cars and Cellphones, it is important
to notice that F-measure values stabilize at around 3000
previous submissions and remain the same until 10000 sub-
missions. This shows that our method does not require a

4The same behavior was observed for the other Books
datasets. For saving space, we present their results in Ap-
pendix F.
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Figure 2: Behavior of the form filling quality with the increasing of the previous submissions.

large number of previous submissions to reach a good qual-
ity of results. Besides, even starting with a small number of
submissions, iForm is able to help decrease the human effort
in the form filling task. Notice that the expected volume of
previous submissions in the application scenarios which mo-
tivated our work, i.e, sites such as eBay and TodaOferta,
is far higher than the number of previous submissions we
simulated in this experiment.

5.3 Content Overlap
In this experiment we aim at studying how much iForm

depends on the overlap between the contents of the text
inputs and the contents of the previous submissions, i. e.,
the known values submitted to each field.

In our solution, we can characterize three different forms
of content overlap: (1) Value Overlap: the overlap between
the set of complete values found in a given input text and the
set of previously known values; (2) Term Overlap: the over-
lap between all terms on the input text and all terms com-
posing the previously know values; (3) Term-Value Overlap:
the overlap between the terms in the input text that com-
pose values to be extracted and all terms composing the
previously known values.

To exemplify, consider the input text I = {“Brand New
Honda Accord Hybrid”}, from which the values “Honda”
and “Accord Hybrid” are to be extracted for fields Make
and Model, respectively. Suppose that the following values
are known for fields Make and Model: Make= {“Honda”,
“Mercedes”} and Model= {“City”,“Civic Hybrid”, “A310”}.

In this example, for input text I: (a) the value overlap
is 1/2, since from the two values to be extracted only one
is known; (b) the term overlap is 2/5, since from the five
terms in the input text, only 2 are available in the known
values; (c) the term-value overlap is 2/3, since from the three
terms composing values to be extracted from I, only two are
previously known.

In Figure 3 we present the quality results of experiment
described in Section 5.1 for the Books1 dataset presented
for different ranges of overlap, considering the three forms
of overlap described above.

Figure 3(a) shows that for most of the inputs (36 out of
50) the value overlap is not greater than 50%, and, despite
that, the quality of the results in terms of precision, recall
and f-measure is close to the quality obtained with a larger
value overlap, 76% to 100%, observed on 3 inputs. This is
accordance with the results presented in Figure 3(b), since
most of the inputs have most of terms present in the previ-
ous submissions. This characteristic is exploit by our model
through Eq. 1, resulting in the good results obtained for this
dataset. Moreover, in this dataset, as shown in Figure 3(c),
the useful terms are well distributed among the values to be
extracted from the input text.

These results show an important property in our approach:
iForm does not rely on a high coverage of values in the pre-
vious submissions, as long as these submissions are repre-
sentative from the domain.

This same analysis is present in Appendix E for datasets
Movies, Cars and Cellphones.

5.4 Comparison with iCRF

Finally, we compare iForm and the interactive method
proposed by Kristjansson et al [12], which we name here as
iCRF, for the task of extracting segments from text inputs
and filling a form. We took from the RISE Jobs collection
a subset of 100 job postings already containing labels man-
ually assigned for the segments to be extracted. These job
postings form an adequate training set for iCRF, since this
method requires examples of values to be extracted to ap-
pear within the context they occur. Thus, we could not use
the remaining 450 job postings from the collection, for which
extracted values are provided separately from the postings
in which they occur. From the same set of 100 documents,
we took the labeled segments to simulate submissions to the
form-based interfaces for iForm. Notice that, unlike iCRF,
iForm does not require the annotated input for training.

Next, we tested both approaches using a distinct set of 50
documents, whose extraction outcome was available from
RISE, allowing us to verify the results. These results are
reported in Table 2 in terms of field-level F-measure.

For the experiment with iCRF, we used a publicly avail-
able implementation of CRF by Sunita Sarawagi and de-
ployed the same features described in [13]. Overall, these
are standard features available on the public CRF imple-
mentation, e.g., dictionary features, word score functions
and transition features. Further, we consider that the forms
are filled in an interactive process, with the previously filled
forms being corrected by a human and then being incorpo-
rated to the training set.

Field iForm iCRF Field iForm iCRF

Application 0.82 0.37 Platform 0.47 0.38

Area 0.18 0.23 Recruiter 0.44 0.22

City 0.70 0.65 Req. Degree 0.31 0.59

Company 0.41 0.17 Salary 0.22 0.25

Country 0.77 0.87 State 0.85 0.81

Desired Degree 0.57 0.37 Title 0.72 0.49

Language 0.84 0.69

Table 2: Field-level f-measure

According to the results presented in Table 2, iForm had
superior F-measure levels in nine fields, while iCRF had sig-
nificant superior F-measure levels in four fields only, as indi-
cated by boldface numbers. The lower quality obtained by
iCRF is explained by the fact that segments to be extracted
from typical free text inputs, such as jobs postings, may not
appear in a regular context, which is an important require-
ment for CRF-based methods. For the case of iForm, this

157



(a) (b) (c)

Figure 3: Form filling quality on Books1 dataset with different overlap ranges.

context is less important, since it relies on features related
to the fields instead of relying on features from the input
texts. In addition, iForm was designed to conveniently ex-
ploit these field-related features from previous submissions.
If we consider each submission as whole, i.e., the submission-
level quality (see Appendix B), iCRF and iForm achieved,
respectively, 0.46 and 0.59. Recall that, as we have seen, for
one to apply iCRF to this problem, labor-intensive prepa-
ration of training data from a representative sample of text
inputs is required.

6. CONCLUSION AND FUTURE WORK
Our experiments demonstrate that our approach is able

to properly deal with different types of input fields, such as
text boxes, pull-down lists and check boxes and has proved
to be useful as an alternative to automatically filling forms.
There are two main reasons for this conclusion: (1) any
form-based interface can be boosted with iForm; (2) users
can easily verify the correctness of iForm’s outcome (and fix
possible mistakes) through a form-based interface filled by
our approach.

The iForm approach can be deployed in a number of in-
teresting applications that require repetitively entering the
same data available in a text document into several distinct
form-based interfaces of the same domain. For instance, the
same car ad presented in Figure 1 could be used for entering
data on form interfaces of several car advertising sites.

For future work, we will investigate how to help users
to find an appropriate form-based interface given an input
data-rich free text document. This includes finding out,
among a possibly large set of forms, which of them can prop-
erly answer a given user request. This problem requires an
efficient yet scalable and flexible solution for the web sce-
nario. In this case, it would be interesting to extend our
framework to deal with free text queries as well.

iForm assumes that references to values in a data-rich text
are positive indications for using it to fill a form field. This
was corroborated by an inspection we carried out looking for
values with negative references (e.g. “Model is not Honda”)
on our datasets. We discovered that less than 3.0% of value
references in the Cellphones dataset were negative. In the
Cars dataset this percentage was lower than 0.4%. Simi-
lar percentages were found in the other datasets. Notice
that a user can easily correct the system in these rare cases.
Nonetheless we plan to better investigate this in future work.
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APPENDIX
A. BAYESIAN NETWORK ILLUSTRATION

In Figure 4 we illustrate the Bayesian Network that was
deployed in the iForm method.
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Figure 4: Belief network for a segment of text Sab,
related to tokens T1 and Ti, complete attribute value
Vm and path Pl derived from its style.

B. METRICS FOR THE EXPERIMENTAL
EVALUATION

To evaluate the results of our experiments we have used
the well-known metrics precision, recall and f-measure. We
apply these metrics to evaluate the quality of filling a single
field and a whole form submission.

In the case of text boxes, we calculate precision, recall and
f-measure at field level as follows. Let Ai be the set of all
tokens (words) from the input text that should be used for
filling a given field i in the form. Let Si be the set of all
tokens from the input text that were used for filling in this
field i by the automatic filling method. We define precision

(Pi), recall (Ri) and F-measure (Fi) as: Pi = |Ai∩Si|
|Si|

, Ri =
|Ai∩Si|
|Ai|

and Fi = 2(Ri.Pi)
(Ri+Pi)

, respectively.

For pull-down lists, set Ai contains the item in the list of
field i that should be chosen and set Si contains the items
that were chosen for field i. For check boxes, Ai contains the
correct boolean value for field i and Si contains the boolean
value that was set for field i.

Submission-level precision (recall and f-measure), i.e., the
quality of a whole submission, is calculated as the average
of the values of each field used in this submission, observing
that there are submissions in which not all fields are used.

C. DATA SOURCES USED FOR THE EX-
PERIMENTS

Table 3 presents in detail each dataset used in our ex-
perimental evaluation. The column “Test Data” shows the
number of input texts submitted to the form-based inter-
face. The column “Previous Data” refers to the number of
previous submissions that were performed prior to the test.

The Jobs dataset was obtained from RISE (Repository of
on-line Information Sources used in information Extraction
tasks) . The test set consists of 50 postings and the previous
data consists of 100 postings previously annotated, as it is
required for the experimental comparison with iCRF (Sec-
tion 5.4). For the datasets Cars and Cellphones multi-field
web form interfaces and input data-rich text documents were

4http://www.isi.edu/integration/RISE/
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Figure 5: Results obtained when varying ε.

both taken from TodaOferta.com auction website. Similarly
to Cars and Cellphones, for the Books datasets, we took in-
put data-rich text documents from TodaOferta.com, but, in
order to evaluate how good iForm adapts to form variations,
we have taken the multi-field web form interfaces from dis-
tinct websites, TodaOferta.com, IngentaConnect.com, Ou-
press.com and Netlibrary.com, composing datasets Books 1
to 4, respectively. For the test in our experiments, we use
real offers submitted to TodaOferta.com and automatically
fill the corresponding form. In the case of Movie Reviews,
we have built a web form and have taken real short movie
reviews collected from IMDb5 (Previous Submissions), and
from Wikipedia and Freebase (Test Submissions).

D. VARYING ε
One important question in our method is to determine

the value of the threshold ε. Recall from Section 4 that
we consider a segment Sab as a suitable value for a field f
if the probability of the field given this segment is above
the value of this threshold. To study this parameter, we
randomly selected 25 documents of each dataset, submitted
them to iForm varying the parameter ε from 0.1 to 0.9. The
results of the averaged submission-level f-measure achieved
are shown in Figure 5, where in the case of Books datasets,
the curve in the graph corresponds to the average results
for Books 1 to 4. We can see that the results may vary ac-
cording to the domain, which suggests a training adjusting
step could be useful to produce optimized results. Notice
however, that quite good results were achieved when using
ε = 0.2 in the samples submitted. For the Jobs dataset,
the best form-filling result was obtained with ε = 0.5. This
can be explained by the small number of documents that
compose the previous submissions, that requires a more re-
stricted threshold. For all the experiments in this paper, we
set the value 0.2 for ε, including experiments with the Jobs
dataset. We suggest the possibility of introducing a training
step for future work.

E. CONTENT OVERLAP FOR DATASETS
MOVIES, CARS AND CELLPHONES

In this appendix we present, for the other datasets we have
used, the same overlap analysis we discussed in Section 5.3.
Figure 6, presents the results of this analysis. Here, we ob-
served in the Movies datasets trends similar to the ones in
Books1. For the case of datasets Cars and Cellphones, notice
that the term overlap is quite low in all input texts. This is
due to a large number of useless terms typically available on

5http://www.imdb.com
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Datasets Test Data Previous Data Source – Test Data Source – Previous Data
Jobs 50 100 RISE RISE
Movies 50 10000 IMDb Freebase and Wikipedia
Cars 50 10000 TodaOferta.com TodaOferta.com
Cellphones 50 10000 TodaOferta.com TodaOferta.com
Books 1 to 4 50 10000 Submarino.com TodaOferta.com, IngentaConnect.com, Oupress.com, Netlibrary.com

Table 3: Features of each collection used in the experimental evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Form filling quality on Cars, Cellphones and Movies datasets with different overlap ranges.

such input text taken as whole. In these cases, however, use-
ful terms appear within values to be extracted from these
input texts, yielding to the good quality results achieved.
This corroborates our claims regarding the independence of
our approach from large coverage of possible values on pre-
vious submissions.

F. BOOKS DATASETS – ADDITIONAL RE-
SULTS

In addition to the experiments presented in Section 5.2,
where we evaluate the behavior of iForm when the number
of previous submissions increases, Figure 7 presents more
results obtained from different Books datasets.
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Figure 7: Behavior of the form filling quality with
the increasing of the previous submissions with dif-
ferent Book forms.
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