ONDUX: On-Demand Unsupervised Learning for
Information Extraction

Eli Cortez!

Altigran S. da Silvat

Marcos André Goncalves 2

Edleno S. de Moura!

'Universidade Federal do Amazonas
Departamento de Ciéncia da Computagao
. Manaus, AM, Brazil
{eccv,alti,edleno}@dcc.ufam.edu.br

ABSTRACT

Information extraction by text segmentation (IETS) applies
to cases in which data values of interest are organized in
implicit semi-structured records available in textual sources
(e.g. postal addresses, bibliographic information, ads). It is
an important practical problem that has been frequently ad-
dressed in the recent literature. In this paper we introduce
ONDUX (On Demand Unsupervised Information Extrac-
tion), a new unsupervised probabilistic approach for IETS.
As other unsupervised IETS approaches, ONDUX relies on
information available on pre-existing data to associate seg-
ments in the input string with attributes of a given domain.
Unlike other approaches, we rely on very effective matching
strategies instead of explicit learning strategies. The effec-
tiveness of this matching strategy is also exploited to disam-
biguate the extraction of certain attributes through a rein-
forcement step that explores sequencing and positioning of
attribute values directly learned on-demand from test data,
with no previous human-driven training, a feature unique to
ONDUX. This assigns to ONDUX a high degree of flexibil-
ity and results in superior effectiveness, as demonstrated by
the experimental evaluation we report with textual sources
from different domains, in which ONDUX is compared with
a state-of-art IETS approach.

Categories and Subject Descriptors

H.2 [Database Management]|:
; 1.2.6 [Artificial Intelligence]: Learning

Miscellaneous

General Terms
Algorithms, Performance, Experimentation
Keywords

Data Management, Information Extraction, Text Segmen-
tation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’10, June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

807

2Universidade Federal de Minas Gerais
Departamento de Ciéncia da Computagao
Belo Horizonte - MG - Brazil
mgoncalv@dcc.ufmg.br

1. INTRODUCTION

The abundance of on-line sources of text documents con-
taining implicit semi-structured data records in the form of
continuous text, such as product descriptions, bibliographic
citations, postal addresses, classified ads, etc., has attracted
a number of research efforts towards automatically extract-
ing their data values by segmenting the text containing them
[1, 4, 12, 20]. This interest is motivated by the necessity of
having these data stored in some structured format as rela-
tional databases or XML, so that it can be further queried,
processed and analyzed.

For instance, an article from “The Washington Post” re-
ports that the revenues by Newspapers from classified ads,
which was $17 billion in 2006, has been declining since 2000,
while the revenues from on-line classified ads grew 6 times
in the same period, reaching $3.1 billion. Empowering users
with services such as sophisticated searching, dissemination,
comparison, personalization on top of this content, can have
a significant impact on this business. Extracting and struc-
turing these data is a crucial step towards this goal.

As an example of the information extraction task per-
formed by a typical text segmentation system, consider the
input ad “Regent Square $228,900 1028 Mifflin Ave.; 6 Bed-
rooms; 2 Bathrooms. 412-638-7273”. A suitable text seg-
mentation over this string would generate a structured record
such as:

(neighborhood,“ Regent Square”),
(price,“$228,9007),
(number,“1028”),
(street,“Mifflin Ave.;”),
(bedrooms,“6 Bedrooms;”),
(bathrooms,*“2 Bathrooms.”),
(phone,“}12-638-7279")

The dominant approach in information extraction by text
segmentation (IETS) is the deployment of statistical meth-
ods such as as Hidden Markov Models (HMM) [4] or Con-
ditional Random Fields models (CRF) [11] to automatically
learn a statistical model for each application domain. These
methods usually require training data consisting of a set of
representative segmented and labeled input strings. Cur-
rently, methods based on CRF are state-of-art, outperform-
ing HMM-based methods in experimental evaluations pre-
sented in the literature [19, 20].

Obtaining a large amount of training data may be very
expensive or even unfeasible in some situations. Recognizing
this problem, recent papers proposed the use of pre-existing
datasets to alleviate the need for manually labeled training
string segments to associate them with their corresponding
attributes [1, 12, 20]. In these methods, the learning process
takes advantage of known values of a given attribute to train
a model for recognizing values of this attribute occurring in
an input textual record.

In this paper we introduce ONDUX (ON-Demand Un-
supervised Information EXtraction), an alternative unsu-
pervised probabilistic IETS approach. Similar to previous
unsupervised approaches [1, 12, 20], ONDUX also relies on
pre-existing data, more specifically, on sets of attribute val-
ues from pre-existing data sources, to associate segments in
the input string with a given attribute. Different from pre-
vious work, there is not an explicit learning process in this
step. Instead, we use simple generic matching functions to
compute a score measuring the likelihood of text segments
to occur as a typical value of an attribute.

Although this simple greedy matching-based strategy is
effective (as shown in our experimental results), it may fail
for ambiguous attributes with similar domains. This is the
case of attributes such as Title and Keywords, found on bib-
liographic information extracted from paper headings. To
solve this, we rely on positioning and sequencing probabil-
ities of the attribute values. While in traditional methods,
such as HMM and CRF, these probabilities are assumed as
fixed [1, 20] or are learned through a manual labeling pro-
cess [4, 18, 12], our method can automatically adapt to vari-
able attribute values positioning and sequencing in an unsu-
pervised way. In other words, it does not rely on the explicit
association between unsegmented input strings and the cor-
responding segmented strings (labeled data) that supervised
systems require for training, i.e., the labels “come for free”
with the attributes of our pre-existing data source. More im-
portantly, as in some unsupervised learning and transduc-
tive methods [9], we take advantage of information about
the own records we are trying to extract (the test set) by
exploiting the high certainty of the matching step in order to
incorporate, on demand, information about the positioning
and sequencing of attribute values in these records within
the extraction model we generate.

To corroborate our claims regarding the high-quality and
flexibility of our approach, we present results of experiments
with several textual sources from different domains. In these
experiments ONDUX is compared with CRF, the state-of-
art method in probabilistic information extraction [11, 19],
in its unsupervised version [20]. Results of these experi-
ments reveal that ONDUX was able to correctly identify at-
tribute values in all different datasets, outperforming CRF
in most of the cases. Moreover, despite the on-demand, un-
supervised nature of ONDUX, in experiments performed to
evaluate the time spent on processing instances, our per-
formance was very similar to that of CRF, which applies
a previously constructed extraction model generated in an
off-line training phase.

In sum, the main contribution of our work is a very effec-
tive unsupervised information extraction method that:(1)
instead of requiring explicit learning of a model for identi-
fying attributes values on the input texts, uses simple but
very effective greedy strategy based on matching; (2) ex-
ploits the high accuracy of this matching strategy to learn

808

from the test data the probabilities of positioning and se-
quencing of attributes in an unsupervised manner, making
no rigid assumptions about the order of the attribute val-
ues, thus being much more robust and flexible to changes in
patterns; (3) despite the fact of operating on-demand, has
processing time of test instances similar to that of methods
that use explicit learning such as CRF.

This paper is organized as follows. Section 2 discusses
the main challenges in IETS and previous approaches in the
literature. Section 3 presents an overview of ONDUX and
discusses the details on the steps involved in its operation.
Section 4 presents experiments for verifying the effectiveness
of our approach comparing it with a state-of-art IETS ap-
proach. Section 5 presents a comparison of ONDUX with
previous related IETS approaches in the literature. Section 6
concludes the paper giving directions for future work.

2. IETS: CHALLENGES AND APPROACH-

ES

Information extraction by text segmentation (IETS) is the
problem of segmenting text inputs to extract implicit data
values contained in them. Informally, each text input forms
an implicit record [19]. A fairly common approach to solve
this problem is the use of machine learning techniques, either
supervised, i.e., with human-driven training [8, 4, 18], or
unsupervised, i.e., with training provided by some form of
pre-existing data source [1, 5, 12, 20].

One of the first approaches in the literature addressing this
problem was proposed by Freitag and McCallum in [8]. It
consisted in generating independent Hidden Markov Models
(HMM) for recognizing values of each attribute. This ap-
proach was extended in the DATAMOLD tool [4], in which
attribute-driven (or internal) HMMs are nested as states of
an external HMM. This external HMM aims at modeling the
sequencing of attribute values on the implicit records. In-
ternal and external HMM are trained with user-labeled text
segments. Experiments over two real-life datasets yielded
very good results in terms of the accuracy of the extraction
process.

Later on, Conditional Random Fields (CRF) models were
proposed as an alternative to HMM for the IETS task [11].
In comparison with HMM, CRF models are suitable for
modeling problems in which state transitions and emissions
probabilities may vary across hidden states, depending on
the input sequence. In [18], a method for extracting biblio-
graphic data from research papers based on CRF is proposed
and experimentally evaluated with good results. Currently,
CRF constitutes the state-of-art in information extraction
due to its flexibility and the quality of the extraction results
achieved [18, 12].

Although effective, these supervised IETS approaches based
on graphical models such as HMM and CRF usually require
users to label a large amount of training input documents.
There are cases in which training data is hard to obtain,
particularly when a large number of training instances is
necessary to cover several features of the test data.

To address this problem, recent approaches presented in
the literature propose the use of pre-existing data for easing
the training process [1, 12, 20]. According to this strategy,
models for recognizing values of an attribute are generated
from values of this attribute occurring in a database previ-
ously available. These approaches take advantage of large

amounts of existing structured datasets with little or no user
effort.

Following this strategy, recent methods in the literature
use reference tables in combination with graphical models,
that is, HMMs [1] or CRF's [12, 20]. For recognizing values
of a given attribute among segments of the input string, a
model is trained using values available on the reference table
for this attribute. No manually labeled training input strings
are required for this. Once attribute values are recognized,
records can be extracted. The methods proposed in [1, 20]
assume that attributes values in the input text follow a single
global order. This order is learned from a sample batch of
the test instances. On the other hand, the method proposed
in [12] can deal with records bearing different attribute value
orders. To accomplish this, the CRF model must be learned
using additional manually labeled input strings.

A similar strategy is used in [5]. However, when extract-
ing data from a source in a given domain, this approach may
take advantage not only from pre-existing datasets, but also
from other sources containing data on the same domain,
which is extracted simultaneously from all sources using a
2-state HMM for each attribute. Record extraction is ad-
dressed in a unsupervised way by aligning records from the
sources being extracted.

As these approaches alleviate or even eliminate the need
for users to label segments in training input strings; we re-
gard them as unsupervised IETS approaches. Despite this,
experimental results reported for these methods reveal ex-
traction quality levels similar to those obtained with tradi-
tional supervised IETS methods [8, 4, 18].

Our method ONDUX can also be regarded as unsuper-
vised, since it relies on pre-existing data sources to recog-
nize attribute values on input strings. In a first step, it de-
ploys effective generic similarity functions to label text seg-
ments based matching scores between these segments and
known values of a given attribute. Next, assigned labels
are revised based on a reinforcement step that takes into
account sequencing and positioning of attribute values di-
rectly learned on-demand from test data, with no previous
human-driven training. As demonstrated by experimental
results, in which ONDUX is compared with a state-of-art
IETS approach, these features yield highly accurate results
which are in most cases superior to the state-of-the-art.

3. THE ONDUX METHOD

In this section, we present the details of ONDUX, our
unsupervised probabilistic approach for IETS. Given a text
input T containing a set of implicit textual records, ON-
DUX identifies data values available in these records and
associates these values with proper attributes. In the follow-
ing, we first present an overview of ONDUX and describe
the main steps involved in its functioning. Next, each is
discussed in turn with details.

3.1 Overview

Consider an input string I representing a real classified
ad such as the one presented in Figure 1(a). Informally,
the IETS problem consists in segmenting I in a way such
that each segment s receives a label ¢ corresponding to an
attribute a¢, where s represents a value in the domain of a,.
This is illustrated in Figure 1(d), which is an example of the
outcome produced by ONDUX.

Similar to previous approaches [1, 12, 20], in ONDUX, we

809

use attribute values that come from pre-existing data sources
from each domain (e.g. addresses, bibliographic data, etc.)
to label segments in the input text. These values are used
to form domain-specific Knowledge Bases(KBs).

A Knowledge Base is a set of pairs K = {{a1,01),...,
(an,Or)} in which each a; is a distinct attribute, and O; is a
set of strings {04,1,...,0i,n, } called occurrences. Intuitively,
O; is a set of strings representing plausible or typical values
for attribute a;.

Given a data source on a certain domain which includes
values associated with fields or attributes, building a Knowl-
edge Base is a simple process that consists in creating pairs
of attributes and sets of occurrences. Example of possible
data sources are: databases, reference tables, ontologies, etc.

In Figure 2 we present a very simple example of a KB-
which includes only four attributes: Neighborhood, Street,
Bathrooms, and Phone.

The first step in ONDUX operation is called Blocking. In
this step, the input string is roughly segmented into units
we call blocks. Blocks are simply sequences of terms (words)
that are likely to form a value of an attribute. Thus, al-
though terms in a block must all belong to a same value,
a single attribute value may have terms split among two or
more blocks. This concept is illustrated in Figure 1(c). Ob-
serve that the blocks containing terms “Mifflin” and “Ave”
are parts of the same value of attribute Street.

Next, in the Matching step, blocks are matched against
known attribute values, which are available in the Knowl-
edge Base, using a small set of specific matching functions.
By the end of the matching step, each block is pre-labeled
with the name of the attribute for which the best match was
found.

We notice that Blocking and Matching steps alone are
enough to correctly label the large majority of the segments
in the input string. Indeed, experiments with different do-
mains, which we have performed and reported here, show
that blocks are correctly pre-labeled in more than 80% of
the cases. This is illustrated in Figure 1(d) in which the
Matching was able to successfully label all blocks except for
the ones containing the terms “Regent Square” and “Mifflin”.

Problems such as this are likely to occur in two cases.
First, Mismatching, happens when two distinct attributes
have domains with a large intersection. For instance, when
extracting from scientific paper headings, values from at-
tributes Title and Keywords have usually several terms (words)
in common. In our running example, as shown in Fig-
ure 1(c), “Regent Square” was mistakenly labeled with Street
instead of Neighborhood. Second, Unmatching, happens when
no matching was found for the block in the Knowledge Base,
as the case of the block containing the term “Mifflin” in Fig-
ure 1(c).

To deal with such problems, our method deploys a third
step we call Reinforcement in which the pre-labeling re-
sulting from the Matching step is reinforced by taking into
consideration the positioning and the sequencing of labeled
blocks in the input texts.

To accomplish this, first, a probabilistic HMM-like graph
model we call PSM(Positioning and Sequencing Model) is
built. This model captures (i) the probability of a block
labeled with ¢ appear in position p in the input text, and
(#4) the probability of a block labeled with £ appear before a
block labeled with m in the input text. Next, these probabil-
ities are used to reinforce the pre-labeling resulting from the

(a)

Regent Square $228,900 1028 Mifflin Ave.; 6 Bedrooms; 2 Bathrooms. 412-638-7273

(b) Regent Square| | $228,900] |1028] | Miffiin| [Ave.; .| 412-638-7273
Street Price Number ?2?2? eel. Bedrooms Bathrooms Phone

(c) Regent Square| | $228,900] |1028] | Mifflin]]Ave . || 412-638-7273]
Neighboorhood Price Number Street. Bedrooms Bathrooms Phone

(d) |Regent Square| | $228,00] [1028| |Mifflin Ave.; . | 412-638-7273)

Figure 1: Example of an extraction process on a classified ad using ONDUX.

K ={(Neighborhood, ONecighborhood), (Street, Ostreet), (Bathrooms, Opathrooms, Phone, Ophone)}
ONecighborhood ={“Regent Square” “Milenight Park”}
Ostreet ={“Regent St.” “Morewood Ave.” “Square Ave. Park”}
OBathrooms ={“Two Bathrooms” “5 Bathrooms”}
Ophone ={“(323) 462-6252",171 289-7527"}

Figure 2: A simple example of a Knowledge Base.

Labeling step, assigning labels to previous unmatched blocks
and changing labels for blocks found to be mismatched so
far.

One important point to highlight regarding ONDUX is
that PSM is built without manual training, using the pre-
labeling resulting from the Matching step. This implies that
the model is learned on-demand from test instances, with
no a priori training, relying on the very effective matching
strategies of the Matching step.

In the following we present the details of each step de-
scribed above.

3.2 Blocking

The first step of ONDUX consists of splitting an input
string into substrings we call blocks. In our proposed method,
we consider blocks as sequences of terms that will compose
the same value of a certain attribute. In Figure 1(c) the
blocks identified in our example input string are marked
with rectangles.

The blocking process is based on the co-occurrence of
terms in a same attribute value according to the Knowledge
Base. This process is described in Algorithm 1.

Let I be an input string. Initially, terms are extracted
from I based on the occurrence of white spaces in the string.

Special symbols and punctuation are simply discarded (Line 1).

Next (Lines 7-15), blocks are built as follows: if the cur-
rent term (say, t;—1) and next term (say, t;) are known to
co-occur in some occurrence in the Knowledge Base, then
t; will compose the same block as t;_;. Otherwise, a new
block will be built for ¢;. This process is repeated until all
terms of [are assigned to a block. Notice that terms that
do not occur in the Knowledge Base always form a block
alone.

According to the Knowledge Base presented in Figure 2,
terms “Regent” and “Square” co-occur as values of the at-
tribute Neighborhood. Thus, as shown in Figure 1(b),these
terms are in the same block, i.e, the first block in the figure.

3.3 Matching

The Matching step consists in associating each block gen-
erated on the Blocking step with an attribute represented in
the Knowledge Base. For this, we use a small set of specific
similarity functions to match each block against the occur-

810

Algorithm 1 Blocking
I : Input Text
K ={(a1,01),...,{an,0n)} : Knowledge Base
: T : (to,...,tn) «— ExtractTerms(I)
By « ...+ B, «— & {Initialize blocks}
By — Bg U (to); {Builds the first block}
1=0,j=1
: repeat
C «— {{ak,Ok) € K, 05 € Oy | tj—1,tj € 0z}
if C = @ then
{tj—1 and t; do not co-occur}
t < i+ 1; {Next block}
end if
B; «— B; U (t;); {Adds t; to the current block}
j++; {Next term}
s until j =n

rences composing the Knowledge Base and determinate the
attribute that the block is more likely to belong to.

The specific function used to match a block is chosen by
a simple test over the terms composing this block to define
a data type. We consider four distinct types of data with
a corresponding matching function: text, numeric, urls, and
email. These functions are described bellow.

Matching Text values

Values of textual attributes (e.g., names of neighborhoods,
streets, authors, etc.) are handled using a function called AF
(Attribute Frequency) [14], which estimates the similarity
between a given value and the set of values of an attribute.
In our case, the function AF is used to estimate the similarity
between a block B and the values of attribute a; available
on the occurrences in the Knowledge Base. We define AF

as follows.
fitness(t, a;)
teT (a;)NT(b)

7(B)] @

In Equation 1, T'(a;) is the set of all terms found in the oc-
currences of attribute a; in the Knowledge Base and T'(B) is
the set of terms found in block B. The function fitness(t, a;)
evaluates how typical a term ¢ is among the values of at-
tribute a;. It is computed as follows.

AF(B,O,Z') =

f(tv ai) « f(t7 ai) (2)

N(@) fmaz(as)
where f(t,a;) is the number of occurrences of a; in the
Knowledge Base which contains the term ¢, fimae(ai) is the
highest frequency of any term among the occurrences of a;
in the Knowledge Base, and N(t) is the total number of oc-
currences of the term ¢ in all attributes represented in the
Knowledge Base.

The first fraction in Equation 2 expresses the probability
of term t to be part of an occurrence of a; in the knowl-
edge base. Such probability would be suitable for our pur-
poses if all a; had the same number of occurrences in the
Knowledge Base. As this is not true in general, attributes
with more occurrences would tend to have higher proba-
bility values. Therefore, we add the second fraction, as a
normalization factor to avoid this problem. This fraction
gives the frequency of ¢ in occurrences of a; normalized by
maximum frequency of a value in occurrences of a;. Thus,
it varies from 0, which means completely infrequent, to 1,
which means this is the most frequent. This normalization
is also useful for making the frequency terms comparable
among all attributes.

Thus, for each block B with textual values in the input
string, we calculate AF(B,a;), for every textual attribute
a; in the Knowledge Base. Finally, B is associated with the
attribute which gives the maximum AF value.

We notice that although we could have used some other
similarity function, for instance, based on the vector space
model, previous results [6, 7, 14] have shown that AF is very
effective for dealing with small portions of texts such as the
ones typically found in blocks.

fitness(t,a;) =

Matching Numeric Values

For the case of blocks containing numbers only (e.g. page
numbers, year, volume, house number, price, etc.) tra-
ditional textual similarity functions do not work properly.
Thus, for matching these blocks we assume, as proposed
in [2], that the values in numerical attributes follow a gaus-
sian distribution. Based on this assumption, we measure the
similarity between a numeric value vg represented in a block
B and the set values V(a;) of an attribute a; in the Knowl-
edge Base, by evaluating how close vp is from the mean
value of V(a;) according to the probability density function
of a;. For this, we use function NM (Numeric Matching),
defined in Equation 3, normalized by the maximum proba-
bility density of V' (a;), which is reached when a given value
is equal to the average!.

VB — U

NM(B,a;)=e 202

®3)

where o and p are the standard deviation and the average,
respectively, of values of V' (a;), and vp is the numerical value
that composes B.

Notice that when vp is close to the average of values in
V(a;), NM(B,a;) is close to 1. As vp assumes values far
from the average, the similarity tends to zero.

As for the case of textual values, for each block B with
numeric values in the input string, we calculate NM (B, a;),
for every numeric attribute a; in the Knowledge Baseand B
is associated with the attribute which gives the maximum
NM value.

!The maximum probability density of V (a;) is 1/v/270?2

811

In many cases numeric values in the input strings are for-
mated using special characters. For instance, notice the
price and the phone number in the example text input in
Figure 1. Thus, prior to the application of the NV M function,
these characters are removed and the remaining number are
concatenated. We call this process Normalization. For in-
stance, the string “412-638-7273" is normalized to form a nu-
meric value 4126387273 that can be applied to the function
NM. Normalization is also performed over numeric values
in the occurrences from the Knowledge Base. This is the
case occurrences of attribute Phone illustrated in Figure 2.

Matching URLs and e-mail values

For matching URL and e-mails, considering that values in
attributes of these domains follow a specific format, we ap-
ply simple binary functions using regular expressions, which
identify each specific format and return true or false.

Unmatchings and Mismatchings

Despite its simplicity, the simple matching strategy we adopt
to label blocks is by itself a very effective approach for la-
beling segments in the input text. Indeed, experiments with
different domains, which we have performed and reported
here, show that blocks are correctly pre-labeled in more than
70% of the cases.

In Figure 1(c) we present the result obtained after the
matching phase for our running example. As can be noticed,
almost all blocks were assigned to a proper attribute, except
for the following cases: (1) the block containing “Mifflin” was
left unmatched and (2) the block containing “Regent Square”
was mistakenly assigned to Street, instead of being assigned
to Neighborhood. These are examples of unmatchings and
mismatchings in the context of text attributes, we further
discuss here due to its importance.

As defined by Equations 1 and 2, the AF' function relies
on the intersection between the terms composing a given
block B and the set of terms composing the known values
of an attribute a;, i.e., the vocabulary of a;.

Thus, the first case, unmatched blocks, occurs occur when
no term from B is found in values of a;. This may represent
a problem if the Knowledge Base. does not contain repre-
sentative values for the domain of a;. The second case, mis-
matched blocks, occurs when a distinct attribute a; shares a
similar vocabulary with a;, since AF (B, a;) result in a value
greater than AF(B,a;). This may happen not only due to
the misrepresentation of a; domain but also due to the in-
trinsic ambiguous nature of both attributes. This is the case
for attributes Street and Neighborhood in our example.

To deal with both cases, our method includes a third step,
Reinforcement, which is discussed in the following section.

3.4 Reinforcement

The Reinforcement step consists in revising the pre-labeling
made by the Matching step over the blocks. More specifi-
cally, unmatched blocks are labeled and mismatched blocks
are expected to be correctly re-labeled. We notice that in our
context, the term Reinforcement is used in a sense slightly
different from the traditional Reinforcement Learning tech-
nique [10]. Indeed, in our case the PSM does not only
reinforces the labeling performed by the matching step, but
also revises and and possibly corrects it.

Let m and £ be the labels which respectively identify at-
tributes a; and a,, from the Knowledge Base. Consider an

input string ..., Bi—1, Bi,..., so that m is known to label
block B;_1. To verify if £ can be used to label block B;, the
Reinforcement step takes into account: (1) the probability
of the i-th block in the input strings being labeled with ¢;
and (2) the probability of using ¢ to label a block following
another block labeled with m (e.g. B;—1).

These probabilities are estimated, based in the knowledge
acquired as a result of the Matching step by means of a prob-
abilistic HMM-like graph model we call PSM(Positioning
and Sequencing Model). Next, these probabilities are used
to reinforce the pre-labeling resulting from the Matching
step.

As the pre-labeling of blocks performed in this step has
a high accuracy (as demonstrated in our experiments), it
can be used to learn features related to sequencing and the
positioning of attribute values in input texts. It is important
to notice that these features are learned on-demand from
each set of input text with no need for human training nor
assumptions regarding a particular order of attribute values.

Positioning and Sequencing Model

A Positioning and Sequencing Model or PSM consists of:
(1) a set of states L = {begin, l1,l2,...,ln, end} where each
state [; corresponds to a label assigned to a block on the
Matching step, except for two special states, begin and end;
(2) A matrix T that stores the probability of observing a
transition from state I; to state ;; and (3) A matrix P that
stores the probability of observing a label I; in a block in
the position k£ in an input text;

Matrix T', which stores the transition probabilities, is built
using the ratio of the number of transitions made from state
l; to state [; in the output of the Matching step to the to-
tal number of transitions made from state I;. Thus, each
element ¢; ; in T is defined as:

b = # of transitions from l; to l; (@)
"I Total # of transitions out of l;

Matrix P, which stores the position probabilities, is built
using the ratio of the number of times a label [; is observed
in position k in the output of the Matching step to the total
number of labels observed in blocks that occupy position k.
Thus, each element p; j in P is defined as:

- _ # of observations of l; in k (5)
Pije = Total # of blocks in k

By using Equations 4 and 4, matrices 1" and P are built
to maximize the probabilities of the sequencing and the po-
sitioning observed for the attribute values, according to the
labeled blocks in the output of the matching step. This fol-
lows the Maximum Likelihood approach, commonly used for
training graphical models [4, 19].

In practice, building matrices 7" and P involve performing
a single pass over the output from the Matching phase. No-
tice that blocks left unmatched are discarded when building
these matrices. Obviously, possible mismatched blocks will
be used to built the PSM, generating spurious transitions.
However, as the number of mismatches resulting from the
Matching step is rather small, as demonstrated in our ex-
periments, they do not compromise the overall correctness
of the model.

Figure 3 shows an example of the PSM built for a test
set of classified ads. As we can see, the graph represents
not only information on the sequencing of labels assigned to

812

Figure 3: Example of a PSM

blocks, but also on the positioning of labels in blocks within
text inputs. For instance, in this test set, input texts are
more likely to begin with blocks labeled with Neighborhood
than with blocks labeled with Street. Also, there is a high
probability that blocks labeled with Phone occurring after
blocks labeled with Bedrooms.

After generating the PSM, the estimated probabilities are
used to perform label reinforcement, as discussed in the fol-
lowing section.

Label Reinforcement

On the Matching step, the labeling of a block was made
based entirely on the matching functions introduced in Sec-
tion 3.3. However, after building the PSM, the decision on
what label to assign to a block can also take into account
the probabilities related to positioning and sequencing in
text inputs.

To combine these factors, let M (B, a;) be one of the match-
ing functions presented in Section 3.3 and assume that it
represents the probability of a block B to occur in a value of
the domain of attribute a;, according the Knowledge Base.

As M(B,a;) is estimated based uniquely on the Knowl-
edge Base, it is independent on the particular source of
the input strings. On the other hand, the positioning and
sequencing probabilities are learned from each particular
source during the extraction process, and they are mutu-
ally independent.

The independence between the three factors allows us to
combine them through the Bayesian disjunctive operator
or(-,-), also known as Noisy-OR-Gate [17], which is defined
as:

or(xi,...

) =1—((1—a1) x ... x (1—x,))

where each x; is a probability.
In our case, we use the following:

FS(B,ai) =1-((1-M(B,a;)) x (1=t;:) x (1 =pi,x)) (6)

where B is a block found in position k£ in a given input
string, preceded by another block known to be assigned to
attribute a;. Factors ¢;; and p; . are the probabilities stored
in matrices T and P, respectively.

Informally, by using the disjunctive operator we assume
that any of the factors is likely to determine the labeling
(i.e., significantly increase its final probability), regardless
of other factors [17]. By doing so, we avoid having to fine-
tune relative weights for individual factors. As we shall see,
this hypothesis will be confirmed in our experiments.

Function F'S(B, a;) is computed for each block B in the in-
put text for all attributes a; of the same data type (i.e., text,

numeric, URL and e-mail). B is finally labeled with a label
representing the attribute which yielded the highest score
according to F'S. Notice that there will be no unmatched
blocks after this process. Once all blocks are labeled, con-
tiguous blocks with a same label are merged. Thus, each
block would correspond to a single attribute value.

This is illustrated in our running example in Figure 1(d),
in which all blocks are correctly assigned to the attributes.
The first block, which was wrongly labeled in the matching
phase, has now received a correct assignment to the Neigh-
borhood attribute. Also, the unmatched block containing
the term “Miffin” now composes a value of attribute Street.

4. EXPERIMENTAL RESULTS

In this section, we evaluate ONDUX using a variety of
real datasets to show that our method is a robust, accurate,
and efficient unsupervised approach for IETS. We first de-
scribe the experimental setup and metrics used. Then, we
report results on extraction quality and performance over
all distinct datasets.

4.1 Setup

Baselines

In the experiments, we compare ONDUX with an unsuper-
vised version of CRF, a state-of-art IETS approach. This
version was developed by adapting the publicly available
implementation of CRF by Sunita Sarawagi 2, according to
what is described in [20]. We call this version U-CRF. We
believe that U-CRF represents the most suitable baseline
for comparing with ONDUX, as it delivers top performance
while at the same time does not require user-provided train-
ing. Although the Extended Semi-markov CRF presented in
[12] could have been used as baseline, since it relies mostly
on features extracted from a KB, it also uses a small portion
of manually trained data. Moreover, [20] improves on [12]
results. However, since this our first baseline assumes, as
we shall see in more details later, that the order of the text
sequences to be extracted is fixed, we also included the stan-
dard CRF model [11] (called S-CRF), that does not have
this limitation at all but requires manually labeled train-
ing data. Obviously, S-CRF is only used as a baseline for
cases in which we have the training data. Using the two
baselines, also allows us to compare the strengths of each of
these models against our approach.

As for the configuration of U-CRF and S-CRF, we de-
ployed the same features described in [20] and in [11].
Overall, these are standard features available on the pub-
licly CRF implementation, e.g., dictionary features, word
score functions, transition features, etc., plus, in the case of
U-CRF the set of heuristic rules for using negative examples
proposed in [20]. Although the basic CRF model is flexible
enough to allow features to be tailored for specific extrac-
tions tasks, in all experiments we have used the same con-
figurations for U-CRF and S-CRF. This is to ensure a fair
comparison since we assume that no specific adjustments
were necessary for ONDUX to be used in the experiments.

As required by U-CRF, a batch of the input strings is
used to infer the order of the attribute values. Based on the
information provided in [20], this batch is composed by 10%
of the input strings in all cases.

Zhttp://crf.sourceforge.net/

813

Experimental Data

The sources of previous known data, used to generated the
KB for ONDUX ,the references tables for U-CRF, the train-
ing data for S-CRF, and the test datasets used in the exper-
iments are summarized in Table 1.

We tried to use the same datasets and sources explored
by our baselines, when these were publicly available. In the
case of restricted sources/datasets, we tried to obtain public
versions of similar ones in the same domains.

Indeed, in most cases the data sources and the test datasets
we have used came from public available data sources used
for the empirical analysis of information extraction meth-
ods. This is the case of Bigbook and Restaurants, from the
RISE repository [15], the CORA collection [13] and the Per-
sonalBib dataset [12]. It is important to notice that in the
case of BigBook and CORA, the KB and the reference ta-
bles were build from sets of records already extracted by
third-parties and those are completely disjoint (i.e., no com-
mon entry) from the strings on the test datasets used in the
experiments.

Data on the Classified Ads domain were obtained directly
from the Web. For building the Knowledge Base, we col-
lected data from a on-line database available from Folha On-
line, a popular Brazilian newspaper site. The test dataset
Web Ads is formed by unstructured strings containing ads
from other five Brazilian newspaper sites. Each website
bares a distinct classified ads format, e.g., in terms of at-
tribute values order and positioning. Moreover, the number
of distinct attribute occurrences in each instance vary from 5
to 18. These properties result in a high level of heterogeneity
in the test instances.

Metrics for Evaluation

In the experiments we evaluated the extraction results ob-
tained after the Matching and Reinforcement steps discussed
in Section 3. We aim at verifying how each step contributes
to the overall effectiveness of ONDUX. In the evaluation we
used the well known precision, recall, and F-measure met-
rics, but all tables report F-measure values.

Let B; be a reference set and S; be a test set to be com-
pared with B;. We define precision (P;), recall (R;) and
F-measure (F;) as:

- |B; N .S5|
|:Si]

o |B: N Si]

2(R..P,)
R, =
| Bi]

(Ri + P)

For all the reported comparisons with U-CRF, we used
the Student’s T-test [3] for determining if the difference in
performance was statistically significant. In all cases, we
only drawn conclusions from results that were significant in,
at least, 5% level for both tests. Non-significant values are
omitted.

Also, we run each experiment five times, each time select-
ing different samples for building the knowledge base and
for testing. For all the experiments we performed, we report
the average of the results obtained in each of the five runs.

4.2 Extraction Quality

P; F; = (7)

4.2.1 Blocking Results

The first result we report aims at verifying in practice the
strategy we have formulated for the Blocking step, that is,
whenever our blocking strategy generates blocks in which all

Domain Source Attributes | Records Dataset Attributes to be extracted | Text Inputs
. BigBook 5 500 to 2000
Addresses BigBook 5 2000 Resiauranis i 350
o . CORA 13 350
Bibliographic Data BorsonalBib = 395 CORA 13 150
Classified Ads Folha On-line 5 to 18 125 Web Ads 5 to 18 500

Table 1: Domains, data sources and test datasets used in the experiments.

terms belong to a unique attribute. Thus, we measure how
homogeneous each generated block is.

Dataset Source % Same % Unknown
BigBook BigBook 94.13% 5.34%
Restaurants BigBook 92.17% 7.42%
CORA CORA 80.91% 18.88%
CORA PersonalBib 78.00% 19.47%
WebAds Folha On-Line 87.13% 12.32%

Table 2: Results of Experiments on the Blocking
Step.

Table 2, column “% Same” shows that in all test datasets
a large percentage of blocks contain terms found in the val-
ues of the same attribute according to the Knowledge Base.
Column “% Unknown” shows the percentage of blocks with
terms not represented in the Knowledge Base. As pointed
out in Section 3.2, such blocks always contain a single term.
We notice that in all cases the percentage of heterogeneous
blocks, that is, those that are not homogeneous nor unknown
is rather small, less than 3%. Thus, we conclude that our
blocking strategy behaves as expected.

It is worth mentioning that the high percentage of un-
known blocks in the CORA dataset is caused by the diver-
sity of terms that is normally found in the scientific paper
metadata, specially in the Title attribute. As we shall see
latter, despite this, ONDUX shows an excellent performance
in this dataset.

4.2.2 Attribute-Level Results

To demonstrate the effectiveness of the whole extraction
process with our method, we evaluate its extraction quality
by analyzing, for each attribute, if the (complete) values
assigned by our method to this attribute are correct.

Addresses Domain

Table 3 shows the results for the attribute level extraction
over the BigBook dataset using the BigBook data source.
Recall that, although the same collection has been used, the
dataset and the data source are disjoint. This the same
experiment reported in [20], and we include it here for com-
pleteness and to validate our baseline implementation. The
BigBook dataset follows the assumption made by [20], ac-
cording to which “a batch of text sequences to be segmented
share the same total attribute order”. We call this single
total attribute order assumption.

In this table, values in boldface indicate a statistically
superior result with at least 95% confidence. Starting by the
comparison between the unsupervised methods, we can see
that the results of both the U-CRF and ONDUX after the
reinforcement are extremely high for all attributes (higher
than 0.988 for all attributes). However, the results of our
method are statistically superior than those of U-CRF in at
least two attributes (i.e., City and Phone and are statistically

814

ONDUX
Attribute | S-CRF | U-CRF | Matching | Reinforc.
Name 0.997 0.995 0.928 0.996
Street 0.995 0.993 0.893 0.995
City 0.986 0.990 0.924 0.995
State 0.999 0.999 0.944 1.000
Phone 0.992 0.988 0.996 1.000
Average 0.994 0.993 0.937 0.997

Table 3: Extraction over the BigBook dataset using
data from the BigBook source.

tied in the other three attributes. Another important aspect
is the importance of the reinforcement step which produced
gains of more than 5% over already very strong results. A
closer look at this gain, reveals that it is mostly due to the
recall, which improved more that 9%, while the precision
improved only 2%, in average. This in accordance with our
hypothesis regarding the high precision of matching step.
The reinforcement step plays the role of “filing the gaps”
improving the recall. Notice that the U-CRF results are very
similar to those reported in [20], thus further validating our
baseline implementation.

Since in this case, we have manually labeled data in the
BigBook dataset, we were also able to compare the unsuper-
vised methods with S-CRF. In this case, the results of both
CRF-based methods are very close, and the conclusions are
similar to the ones described before. This also shows that
the supervised method, in this particular dataset, could not
take much advantage of the training data besides what U-
CRF was able to learn from the references tables.

This experiment was repeated using the Restaurants col-
lection as the test dataset. Our motivation is to show that
IETS approaches based on previously known data such as
ONDUX and U-CRF are capable of learning and using source
independent properties from these data. In this case, as well
as in our others in which the source is different form the
test dataset, the comparison with the S-CRF does not make
sense, since, for this method to work, the learning data has
to come from a similar distribution as the test data. The
Restaurants collection has the same attributes as the Big-
Book collection, except for the State attribute. The single
total attribute order assumption also applies here. The re-
sults are reported in Table 4.

Again, both U-CRF and ONDUX achieved high results for
all attributes, higher than 0.942 for all attributes. ONDUX
had a statistically significant advantage on attributes Name
and Phone, while statistical ties were observed for attributes
Street and City.

Bibliographic Data Domain

The next set of experiment was performed using the CORA
test dataset. This dataset includes bibliographic citations

ONDUX
Attribute | U-CRF | Matching | Reinforcement
Name 0.942 0.892 0.975
Street 0.967 0.911 0.982
City 0.984 0.956 0.987
Phone 0.972 0.982 0.992
Average 0.966 0.935 0.984

Table 4: Extraction over the Restaurants dataset us-
ing data from the BigBook source.

in a variety of styles, including citations for journal papers,
conference papers, books, technical reports, etc. Thus, it
does not follow the single total attribute order assumption
made by [20]. The availability of manually labeled data
allowed us to include the S-CRF method in this comparison.
A similar experiment is reported in [18]. Because of this, we
have to generate our KBand the reference tables for U-CRF
using the same data available on the unstructured labeled
records we use to train the standard CRF, also from the
CORA collection. As always, this training data is disjoint
from the test dataset. The results for this experiment are
presented in Table 5.

ONDUX
Attribute | S-CRF | U-CRF | Matching | Reinforc.
Author 93.602 | 90.633 0.911 0.960
Booktitle 91.539 | 76.847 0.900 0.922
Date 90.056 62.694 0.934 0.935
Editor 87.005 | 17.127 0.779 0.899
Institution | 93.317 | 35.000 0.821 0.884
Journal 90.603 70.916 0.918 0.939
Location 88.704 | 33.333 0.902 0.915
Note 83.243 54.166 0.908 0.921
Pages 98.552 | 82.287 0.934 0.949
Publisher 78.508 | 39.805 0.892 0.913
Tech 83.265 | 16.666 0.753 0.827
Title 96.215 | 77.533 0.900 0.914
Volume 97.290 | 70.676 0.983 0.993
Average 90.146 55.976 0.887 0.921

Table 5: Extraction over the CORA dataset using
data from the CORA source.

First, notice that the high results obtained with the super-
vised CRF (S-CRF) are similar to those reported in the orig-
inal experiment [18]. In the case of ONDUX, even though
it is an unsupervised method, even superior results were
achieved. Statistically superior results were obtained in 6
out of 13 attributes (results in boldface) and statistical ties
were observed in other 4 attributes. The results with U-
CRF were rather low, what is explained by heterogeneity of
the citations in the collections. While the manual training
performed for S-CRF was able to capture this heterogeneity,
U-CRF assumed a fixed attribute order. On the other hand,
ONDUX was able to capture this heterogeneity through the
PSM model, without any manual training.

Still on the Bibliographic data domain, we repeated the
extraction task over the CORA test dataset, but this time,

the previously known data came from the PersonalBib dataset.

This dataset was used in a similar experiment reported in [12].
Again, our aim is demonstrate the source independent na-

ture of unsupervised IETS methods. Notice that not all
attributes from CORA were present in PersonalBib entries.
Thus, we only extracted attribute available on both of them.
The results for this experiment are presented in Table 6. No-
tice that in this case we could not perform manual training ,
since the previously known data came directly from a struc-
tured source. Thus, we do not experiment with the S-CRF
here.

ONDUX
Attribute | U-CRF | Matching | Reinforcement
Author 0.876 0.733 0.922
Booktitle 0.560 0.850 0.892
Date 0.488 0.775 0.895
Journal 0.553 0.898 0.908
Pages 0.503 0.754 0.849
Title 0.694 0.682 0.792
Volume 0.430 0.914 0.958
Average 0.587 0.801 0.888

Table 6: Extraction over the CORA dataset using
data from the PersonalBib source.

The results for ONDUX and U-CRF are quite similar to
those obtained in the previous experiments, with a large
advantage for ONDUX, for the reasons we have already dis-
cussed.

Classified Ads Domain

Finally, Table 7 presents the results for the experiments with
test dataset Web Ads. The Knowledge Base and the refer-
ence tables were built using structured data from the Folha
On-Line collection. In this table, the attribute Others corre-
sponds to an amalgamation of a series of attributes present
only in few adds such as Neighborhood, Backyard, Garden,
etc. For this dataset, ONDUX outperforms U-CRF in about
5% even before the Reinforcement step. After this step,
our method significantly outperforms the baseline in all at-
tributes with an overall gain of more than 10% in average.
Recall that this is a very heterogeneous dataset bearing sev-
eral distinct formats. Our good results in this dataset high-
lights the robustness and the flexibility of our solution, even
when compared to our closest competitor.

ONDUX
Attribute | U-CRF | Matching | Reinforcement
Bedroom 0.791 0.738 0.861
Living 0.724 0.852 0.905
Phone 0.754 0.884 0.926
Price 0.786 0.907 0.936
Kitchen 0.788 0.776 0.849
Bathroom | 0.810 0.760 0.792
Suite 0.900 0.853 0.881
Pantry 0.687 0.741 0.796
Garage 0.714 0.784 0.816
Pool 0.683 0.711 0.780
Others 0.719 0.777 0.796
Average 0.760 0.798 0.849

Table 7: Extraction over the Web Ads dataset using
data from the Folha On-Line source.

4.3 Dependency on Previously Known Data

An important question to address is to determine how
dependent the quality of results provided by the unsuper-
vised IETS methods studied is from the overlap between the
previously known data and the text input. To study such
dependency, we performed experiments to compare the be-
havior of ONDUX and U-CRF when varying the amount
of terms given in the Knowledge Base or reference tables
that overlap with the terms found in the input text. Recall
that the entries in which these terms occur are used to form
attribute occurrences in the Knowledge Base for ONDUX,
and the reference tables for training U-CRF.

The experiments were performed using the BigBook dataset,
which contains about 4000 entries. As mentioned earlier,
this dataset came from the RISE repository [15]. Thus, the
KB and the reference tables were build from sets of records
already extracted, which are disjoint from the strings on the
test datasets used from the same collections.

In the experiments, we vary the number of know terms
that are shared between the previously known data and the
input test sequence. We have also varied the number of in-
put strings in the test sequence to check whether the amount
of overlap necessary to obtain good results increase as the
number of text inputs found in the test sequence also in-
creases.

Figure 4 shows the results for four different sizes of test
set, varying the number of text inputs present in the test
set from (a) 500, to (d) 2000. The number of shared terms
between the Knowledge Baseand the test input sequence
varies in all cases from 50 to 1000 terms, and the extraction
quality is evaluated by means of F-measure.

An important information obtained from these four graphs
is that the quality of results provided by the methods does
not vary with the size of the test input for fixed amounts
of shared terms. For instance, with a overlap of 250 terms,
ONDUX achieved 0.73 of F-measure for the test of size 500
and 0.74 for the test of size 1500. When taking an overlap
of 100 terms, values are 0.66, 0.67. 0.68 and 0.64 for the test
sizes 500, 1000, 1500 and 2000, respectively. These results
indicate that, at least for this dataset domain, both ONDUX
and U-CRF could keep good performance with small amount
of previously known data even for larger test sets. This be-
havior was expected, since both methods use the overlap to
obtain statistics about the structure of the test input se-
quence. Once the number of term overlaps is large enough
to allow the methods to compute such statistics, both meth-
ods are able to learn how to extract data from the test input
sequence, no matter what is its size.

We can also see from the graphs that the total number of
shared terms necessary to achieve good performance is also
not prohibitive, since both methods were able to achieve
high quality performance (more than 95% in case of ON-
DUX) when taking only 750 terms of overlap for all the four
size of test set studied. When looking to the smaller test
sets, this overlap seems to be high when compared to the
size of the test, but it does not need to increase as the test
set increases. The number of records from BigBook source
required to obtain such overlap in the KB was 162 in the
results presented in Figure 4(d), about 8% of the size of the
test set (remembering that these are disjoint sets). This
overlap also represents about 14% of vocabulary overlap be-
tween the KB and the test set. These percentages are ob-
viously higher for the smaller tests, since still we need 750

816

term overlaps to achieve about the same performance, but
would tend to zero for larger test sets.

A good question at this point is to know how practical is
to have hundred of terms in common between a reference
set and a real data source for a system to extract informa-
tion. To give a better idea about practical scenarios, let us
consider all the combinations of data sources and datasets
we tested in our experiments, where most collections were
taken from previous experiments presented in literature.

The term overlap results found in the experiments with
these combinations are depicted in Table 8. As it can be
seem, except for the combination of PersonalBib as data
source and CORA as dataset, in all the experiments per-
formed the number of shared terms is higher than the amounts
of shared terms found in Figure 4, which allowed both ON-
DUX and U-CRF to achieve high level quality of results in
the experiments. For instance, when using BigBook as data
source and Restaurants as the test dataset, the number of
shared terms is 2504. Of course, the overlap is not the unique
factor to determine the performance of the methods and the
amount of overlap required may vary according to other fac-
tors presented in our experiments. However, still the amount
of overlap required by the two experimented methods is not
a prohibitive aspect for their practical application.

Source Dataset # of shared terms
BigBook BigBook 3667
BigBook LA Restaurants 2504
PersonalBib CORA 549
CORA CORA 1089
Folha On-line | Web Ads 1184

Table 8: Term overlap in the experiments per-
formed with all combinations of data sources and
test datasets adopted in the experiments.

4.4 Performance Issues

We move now to discuss performance issues related to
ONDUX. This is an interesting aspect to analyze since ON-
DUX works on-demand, in the sense that positioning and
sequencing information is learned from test instances, with
no a priori training. Although this feature gives our method
a high level of flexibility, it is important to measure its im-
pact on the performance of the whole extraction process
carried out by ONDUX.

Also in this aspect, we compare ONDUX with our baseline
U-CRF. For this, we take into account training and test
times. This is justified by the fact that every new extraction
process carried out by U-CRF requires a new model to be
learned from test instances.

The time figures we report here were collected for each one
of the quality experiments presented earlier. For each spe-
cific task we measure the time in seconds spent by each un-
supervised extraction method. These results are presented
Table 9.

In spite of the on-demand process performed by ONDUX,
the time spent on processing test instances is shorter than
the time spent by U-CRF. In all experiments, we notice that
ONDUX was faster than U-CRF, i.e., it needed less than 27
seconds to execute the whole process in all extraction tasks,
while U-CRF needed at least 194 seconds.

To explain that, we notice that in ONDUX the Matching
step potentially demands the largest amount of time. How-

500 input test strings 1000 input test strings
T T — T T —

1500 input test strings 2000 input test strings
T T T T

5|

F-measure
F-measure

=

U-CRF ——

U-CRF ——
Matching -~}
Reinforcement ——Jill--

Matching -~
Reinforcement ——Jl--

F-measure

e
a &
05 T os
04 E o4 B
w
03 | 03 | =
02 ’DB {55) U-GRF —— 0s L [U-CRF ——
Matching {7} (| Matching {7}
o1 Reinforcement — -~ orr Reinforcement — -

250 500 750
number of shared terms

(b)

250 500 750 50100
number of shared terms

(a)

50100 1000

1000

Figure 4: F-Measure values obtained when varying the

datasets built from BigBook.

ever, for the (frequent) case of textual attributes, the AF
function is implemented using efficient inverted lists, often
used in IR systems. All other steps are linear on the number
of terms in input strings. On the other hand, the extraction
process performed by U-CRF is slower since the generation
of the model for each new extraction task requires verifying
several state and transition features for each attribute prior
to the proper extraction step.

Source Dataset U-CRF | ONDUX
BigBook BigBook 316 23
BigBook LA Restaurants 604 27
PersonalBib CORA 317 21
CORA CORA 194 17
Folha On-line | Web Ads 2746 19

Table 9: Time in seconds spent in each extraction
task.

S. COMPARISON WITH PREVIOUS
APPROACHES

ONDUX falls in the category of methods that apply learn-
ing techniques to extract information from data rich input
strings. As so, it has several points in common with previ-
ous methods that have been successfully applied to such a
task, such as HMM [4] and CRF [11]. However, it also has
unique characteristics that are worth discussing. As CRF
is the current state-of-art method for this problem, we here
compare our method to it. More specifically, we compare
ONDUX with CRF-based methods in the literature that,
like ONDUX, rely on previously known data to generate the
extraction model. These are the methods presented in [12]
and [20], which we refer to as Extended Semi-CRF (ES-
CRF) and Unsupervised CRF (U-CRF, as in the previous
section), respectively.

The first distinction between ONDUX and the other two
approaches is the matching step. This step relies on a hand-
ful of generic matching functions and does not need to be
trained for a specific target source, since it relies only on
the known data available on the KB. In the case of text at-
tributes, the matching function is based on the vocabulary
of the attribute domain, as represented by terms available
in the Knowledge Base, while for the numeric attributes the
distribution probability of the known values is used. In CRF
models, several distinct state features, i.e., those based only
on the properties of each attribute [19], are used for learning
the extraction model. In ES-CRF and U-CRF some of these
features depend on the previously available data, but other
features depend on the specific target source. This is the

817

250 500 750
number of shared terms

(d)

four different sizes of

250 500 750 50100
number of shared terms

()

number of shared terms for

50100 1000 1000

case of segment length and counting of (previously defined)
regular expressions that fire in ES-CRF, and negative exam-
ples formed from token sequences taken from the input text
in U-CRF.

The main difference between ONDUX and the two sim-
ilar approaches, ES-CRF and U-CRF, is the way features
related to positioning and sequencing, of attributed values
(transition features [19]) are learned. In ONDUX these fea-
tures are captured by the PSM model, which, as demon-
strated in our experiments, is flexible enough to assimilate
and represent variations in the order of attributes on the in-
put texts and can be learned without user-provided training.
U-CRF is also capable of automatically learning the order of
attributes, but it cannot handle distinct orderings on the in-
put, since it assumes a single total order for the input texts.
This difficult the application of the method to a range of
practical situations. For instance, in bibliographic data, it
is common to have more than one order in a single dataset.
Further, the order may vary when taking information from
distinct text input sequences, according to the bibliographic
style adopted on each input. The order is even more critical
in classified ads, where each announcer adopts its own way of
describing the object he/she is trying to sell. Another quite
common application is to extract data from online shopping
sites to store them in a database. The attributes of the offer,
such as price, product, discount and so on, seldom appear in
a fixed order. In practical applications like these, ONDUX
is the best alternative method. Further, it is as good as the
baselines for any other practical application.

In ES-CRF, distinct orderings are handled, but user-provided

training is needed to learn the transition features, similarly
to what happens with the standard CRF model, thus in-
creasing the user dependency and the cost to apply the
method in several practical situations.

Finally, ONDUX is largely influenced by FLUX-CiM [6,
7] a unsupervised approach for extracting metadata from
bibliographic citations. While FLUX-CiM also relies on a
matching step in which the AF function is also used, it does
not include a generic reinforcement step. Instead, it uses a
set of domain-specific heuristics based on assumptions re-
garding bibliographic metadata. This includes the use of
punctuation as attribute value delimiters, the occurrence of
single values for attributes other than author names, etc.
As a consequence, FLUX-CiM could not be adopted as a
baseline, since it was not designed for most of the datasets
we have in our experiments. ONDUX can thus be seem as a
significant improvement over FLUX-CiM, which instead of
being applied only to bibliographic metadata, is a general
IETS approach whose algorithms do not rely on domain-

specific assumptions such as these. Specially, it doest not
explicitly relies on the use of punctuation.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented ONDUX (ON-Demand Unsu-
pervised Information EXtraction), an alternative unsuper-
vised probabilistic approach for IETS. ONDUX also relies
on pre-existing data, more specifically, on sets of attributes
values from pre-existing data sources to associate segments
in the input string with a given attribute. Differently from
previous work, there is not an explicit learning process in
this step. Instead, we use simple generic matching functions
to compute a score measuring the likelihood of text segments
to occur as a typical value of an attribute.

To corroborate our claims regarding the high-quality, flex-
ibility and effort-saving features of our approach, we tested
our method with several textual sources from different do-
mains and found that it achieved similar or better results
than CRF, a state-of-art data extraction model. Our experi-
ments also demonstrate that our approach is able to properly
deal with different domains in heterogeneous applications.

We believe that the main contributions of our work are:

(1) a very effective unsupervised information extraction method

that (2) instead of requiring explicit learning of a model for
identifying attributes values in the input texts, uses a sim-
ple but very effective greedy strategy based on matching,
(3) exploits the high accuracy of this matching strategy to
learn from the test data the probabilities of positioning and
sequencing of attributes in an unsupervised manner, mak-
ing no rigid assumptions about the order of the attribute
values, thus being much more flexible and robust to changes
in patterns, and finally (4) despite the fact it operates on-
demand, it has processing time of test instances similar to
that of methods that use explicit learning such as CRF.

The work we carried out with ONDUX opens opportuni-
ties for several future developments. We intend to investi-
gate the use of alternative matching functions that might
better distinguish attribute values. One of the functions we
consider is the one proposed in [16], which is based on the
commonality of features.

In addition, currently ONDUX does not handle nested
structures such as lists of values of a same attribute in a
record. We also plan to address this issue as future work.

Acknowledgements

This work was partially supported by grants from projects
InfoWeb (550874/2007-0 CNPq), INCTWeb (573871/2008-6
CNPq), SIRIAA (55.3126/2005-9 CNPq); MinGroup
(575553/2008-1 CNPq) ; by individual CNPq fellowship
grants to Edleno S. de Moura, Altigran S. Silva and Mar-
cos André Gongalves; and by a CAPES scholarship to Eli
Cortez. This research was also sponsored by UOL
(www.uol.com.br), through its UOL Bolsa Pesquisa pro-
gram, process number 20090213165000.

7. REFERENCES

[1] E. Agichtein and V. Ganti. Mining reference tables for
automatic text segmentation. Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 20-29, Seattle, Washington,USA, 2004.

[2] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.
Automated ranking of database query results. Proc. of

818

(3]

(5]

(8]

(9]

[10]

(11]

CIDR 2003, Biennial Conference on Innovative Data
Systems Research, 2003.

T. Anderson and J. Finn. The New Statistical Analysis of
Data. Springer, 1996.

V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic
segmentation of text into structured records. Proc. of the
ACM SIGMOD International Conference on Management
of Data, pages 175-186, 2001.

S. Chuang, K. Chang, and C. Zhai. Context-aware
wrapping: synchronized data extraction. Proc. of the 33rd
Intl. Conf. on Very Large Databases, pages 699-710,
Viena, Austria, 2007.

E. Cortez, A. da Silva, M. Gongalves, F. Mesquita, and

E. de Moura. FLUX-CIM: flexible unsupervised extraction
of citation metadata. Proc. of the 2007 conference on
Digital libraries, pages 215-224, 2007.

E. Cortez, A. da Silva, M. Gongalves, F. Mesquita, and

E. de Moura. A flexible approach for extracting metadata
from bibliographic citations. Journal of the American
Society for Information Science and Technology, Online
version, 2009.

D. Freitag and A. McCallum. Information extraction with
hmm structures learned by stochastic optimization. In
Proc. of the 17th National Conf. on Artificial Intelligence
and 12th Conf. on Innovative Applications of Artificial
Intelligence, pages 584-589, Austin, Texas, USA, 2000.

T. Joachims. Transductive inference for text classification
using support vector machines. In Proc. of the
International Conference on Machine Learning, pages
200-209, Bled, Slovenia, 1999.

L. P. Kaelbling, M. L. Littman, and A. P. Moore.
Reinforcement learning: A survey. J. Artif. Intell. Res.
(JAIR), 4:237-285, 1996.

J. Lafferty, A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data. In Proc. of the Eighteenth
International Conference on Machine Learning, pages
282-289, 2001.

I. R. Mansuri and S. Sarawagi. Integrating unstructured
data into relational databases. In Proc. of the International
Conference on Data Engineering, page 29. IEEE Computer
Society, 2006.

A. McCallum. Cora Information Extraction Collection.

F. Mesquita, A. da Silva, E. de Moura, P. Calado, and

A. Laender. LABRADOR: Efficiently publishing relational
databases on the web by using keyword-based query
interfaces. Information Processing and Management,
43(4):983-1004, 2007.

I. Muslea. Rise - A Repository of Online Information
Sources used in Information Extraction Tasks.

U. Nambiar and S. Kambhampati. Answering imprecise
queries over autonomous web databases. In Proc. of the
International Conference on Data Engineering, page 45,
Washington, DC, USA, 2006.

J. Pearl and G. Shafer. Probabilistic reasoning in
intelligent systems: networks of plausible inference.
Morgan Kaufmann San Mateo, CA, 1988.

F. Peng and A. McCallum. Information extraction from
research papers using conditional random fields.
Information Processing Management, 42(4):963-979, 2006.
S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261-377, 2008.

C. Zhao, J. Mahmud, and I. V. Ramakrishnan. Exploiting
structured reference data for unsupervised text
segmentation with conditional random fields. In Proc. of
the SIAM International Conference on Data Mining, pages
420-431, Atlanta, Georgia, USA, 2008.

