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Resumo

Neste trabalho, propômos, implementamos e avaliamos uma nova abordagem não-
supervisionada para o problema de Extração de Informação por Segmentação de
Texto (EIST). Nossa abordagem baseia-se em informações dispońıveis em dados
pré-existentes para aprender a associar segmentos de texto com atributos de um
determinado domı́nio utilizando um conjunto muito eficaz de caracteŕısticas base-
ados em conteúdo. A eficácia das caracteŕısticas baseados em conteúdo também
é explorada para aprender diretamente dos textos de entrada caracteŕısticas ba-
seadas em estrutura, sem nenhuma intervenção humana, uma caracteŕıstica única
da nossa abordagem. Com base em nossa abordagem, produzimos inúmeros resul-
tados para lidar com problema de EIST de uma forma não-supervisionada. Em
particular, desenvolvemos, implementamos e avaliamos métodos distintos de EIST,
a saber ONDUX, JUDIE e iForm. ONDUX (On Demand Unsupervised Informa-
tion Extraction) é uma abordagem probabiĺıstica não-supervisionada para EIST que
utiliza caracteŕısticas baseados em conteúdo para o aprendizado de caracteŕısticas
baseadas em estrutura. Caracteŕısticas baseadas em estrutura são exploradas para
a desambiguação da extração de certos atributos através de uma etapa de reforço,
que se baseia na sequência e posicionamento de valores de atributos diretamente
aprendidas sob demanda a partir dos textos de entrada. JUDIE (Joint Unsupervi-
sed Structure Discovery and Information Extraction) visa extrair automaticamente
vários registros semi-estruturadas de dados na forma de texto cont́ınuo e que não
possuem delimitadores expĺıcitos entre eles. Em comparação com outros métodos
de EIST incluindo o ONDUX, JUDIE enfrenta uma tarefa consideravelmente mais
dif́ıcil, que é, extrair informação e ao mesmo tempo, descobrir a estrutura dos re-
gistros impĺıcitos.iForm aplica a nossa abordagem para a tarefa de preenchimento
de formulários da Web. Tal método é capaz de extrair segmentos de um texto rico
em dados dado como entrada e associar estes segmentos com campos de um for-
mulário Web. O processo de extração utiliza caracteŕısticas baseadas em conteúdo
aprendidas a partir de dados que foram previamente submetidos ao formulário web.
Todos estes métodos foram avaliados considerando-se diferentes conjuntos de dados
experimentais, que usamos para realizar um grande conjunto de experimentos, a fim
de validar a nossa abordagem e métodos. Estes experimentos indicam que a nossa
abordagem proposta produz resultados de alta qualidade em relação ao estado-da-
arte e que é capaz de amparar adequadamente métodos de EIST em uma série de
aplicações reais.

Palavras-chave: Extração de Informação, Bando de Dados, Gerência de Dados da
Web





Abstract

In this work we propose, implement and evaluate a new unsupervised approach for
the problem of Information Extraction by Text Segmentation (IETS). Our approach
relies on information available on pre-existing data to learn how to associate seg-
ments in the input string with attributes of a given domain relying on a very effective
set of content-based features. The effectiveness of the content-based features is also
exploited to directly learn from test data structure-based features, with no previous
human-driven training, a feature unique to our approach. Based on our approach,
we have produced a number of results to address the IETS problem in a unsupervised
fashion. In particular, we have developed, implemented and evaluated distinct IETS
methods, namely ONDUX, JUDIE and iForm. ONDUX (On Demand Unsupervi-
sed Information Extraction) is an unsupervised probabilistic approach for IETS that
relies on content-based features to bootstrap the learning of structure-based featu-
res. Structure-based features are exploited to disambiguate the extraction of certain
attributes through a reinforcement step, which relies on sequencing and positioning
of attribute values directly learned on-demand from the input texts. JUDIE (Joint
Unsupervised Structure Discovery and Information Extraction) aims at automati-
cally extracting several semi-structured data records in the form of continuous text
and having no explicit delimiters between them. In comparison with other IETS
methods, including ONDUX, JUDIE faces a task considerably harder, that is, ex-
tracting information while simultaneously uncovering the underlying structure of
the implicit records containing it. In spite of that, it achieves results comparable to
the state-of- the-art methods. iForm applies our approach to the task of Web form
filling. It aims at extracting segments from a data-rich text given as input and asso-
ciating these segments with fields from a target Web form. The extraction process
relies on content-based features learned from data that was previously submitted to
the Web form. All of these methods were evaluated considering different experimen-
tal datasets, which we use to perform a large set of experiments in order to validate
our approach and methods. These experiments indicate that our proposed approach
yields high quality results when compared to state-of-the-art approaches and that
it is able to properly support IETS methods in a number of real applications.

Keywords: Information Extraction, Database, Web Data Management
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Lista de Figuras

1.1 Exemplos de fontes de informação textual dispońıveis na Web hoje
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Caṕıtulo 1

Introdução

Ao longo dos últimos anos tem havido um constante aumento no número e nos tipos

de fontes de informações textuais dispońıveis na World Wide Web. Exemplos de tais

fontes são shoppings virtuais, bibliotecas digitais, redes sociais, blogs, etc. Na maioria

dos casos, essas fontes são de livre acesso, cobrem uma variedade de temas e assuntos,

fornecem informações em formatos e estilos distintos e não impõem formatos ŕıgidos

para a publicação de texto. Além disso, são constantemente atualizadas por usuários

e organizações. De fato, fontes textuais da web são criadas para usuários, portanto,

são desenvolvidas para o consumo de seu conteúdo por pessoas, visando sempre a

facilidade na interação. Por possuir estas caracteŕısticas, o número de usuários que

interagem com estas fontes cresce a cada dia. A Figura 1.1 ilustra algumas fontes

de informação textual populares e que estão atualmente dispońıveis na web.

Aos olhos de pesquisadores da área de gerência de dados, estas fontes consti-

tuem valiosos repositórios de dados cobrindo uma ampla variedade de domı́nios.

Dependendo do tipo de cada fonte, pode-se encontrar nelas dados referentes a in-

formações pessoais, produtos, publicações, empresas, cidades, clima, etc, a partir do

qual é posśıvel executar inúmeras tarefas, tais como: inferência de relacionamentos,

descoberta de preferências de usuários e detecção de tendências.

No entanto, as mesmas caracteŕısticas que fazem as fontes textuais da Web serem

tão úteis e populares também impõem limitações importantes sobre a maneira pela

qual é posśıvel manipular os dados dispońıveis nas mesmas. Especificamente, tre-

1
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Fontes Textuais
e Formatos

Endereços Postais

Referências
Bibliográficas

Anúncios Classificados

Receitas

Registro não-estruturados

Críticas de Filmes

Curriculum VITAE

Descrição de Produtos

Oferta de Emprego

Texto Livre

Shoppings Virtuais

PDF

HTM
L
<XML>

Documentos

Redes Sociais

Bibliotecas Digitais

Figura 1.1: Exemplos de fontes de informação textual dispońıveis na Web hoje em
dia.

chos de texto ricos em dados, tais como descrições de produtos, receitas, referências

bibliográficas, endereços postais, anúncios classificados e cŕıticas de filmes, natural-

mente não possuem estrutura expĺıcita, e dificilmente seus conteúdos estão sujeitos

a alguma forma de processamento automatizado. Além disso, é dif́ıcil identificar

automaticamente os dados relevantes que estão implicitamente presentes em tais

fontes, umas vez que geralmente os mesmos estão misturados com trechos de texto

não relevantes.

Como um exemplo, considere a Figura 1.2, aonde é apresentada uma página

web contendo uma receita culinária. Como pode ser notado, as informações da

receita constituem uma porção de texto rica em dados, e, como dito anteriormente,

está misturada junto a anúncios classificados, comentários, resenhas e outros. Além

disso, os dados dispońıveis dentro do trecho de texto relevante não possuem nenhuma

estrutura expĺıcita.

No entanto, a abundância e a popularidade destas fontes textuais que possuem
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Trecho de Texto 
Rico em Dados

Quantidade  Unidade   Ingrediente

Figura 1.2: Exemplo de uma página web real que contêm porções de texto ricas em
dados.

dados relevantes têm atraido um grande esforço para a resolução dos problemas

relacionados a elas, como: coleta de dados [7, 72], extração [44, 64], consulta [34, 65],

mineração [11, 37] e outros[13, 47].

Em particular, o problema de extração, comumente conhecido como Extração de

Informação (EI) na literatura [64], refere-se à extração automática de informação

estruturada de fontes não-estruturadas, tais como entidades, relacionamentos entre

entidades, e extração de atributos que descrevem as entidades. O estudo de tal

problema é motivado pela necessidade de se ter dados não estruturados armazenados
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em formatos estruturados (SGBDs, XML), de modo que seja posśıvel a realização de

consultas sobre os dados e a realização de analises sobre os mesmos. Este problema

é o tema princial deste trabalho.

O problema de Extração de Informação abrange muitos sub-problemas, tais

como reconhecimento de entidades nomeadas (NER) [60], Extração de Informação

Aberta [5], Extração de Relacionamentos [51] e Segmentação de Texto [64].

Extração de Informação por Segmentação de Texto (EIST) é o problema de seg-

mentação de texto não estruturado para a extração de valores de dados impĺıcitos

contidos neles. Considerando-se a importância prática e teórica de tal problema,

propusemos, implementamos e avaliamos uma abordagem não-supervisionada para

o lidar com o mesmo. Nossa abordagem se baseia em dados pré-existentes para

o aprendizado de caracteŕısticas em um processo de aprendizado de máquina, di-

minuindo a necessidade de dados manualmente rotulados para o treinamento. A

seguir, apresentamos em mais detalhes a definição do problema e discutimos os

desafios enfrentados.



Caṕıtulo 2

Extração de Informação por

Segmentação de Texto

Extração de informações por segmentação de texto (EIST) é o problema da extração

de valores de atributos que implicitamente ocorrem em registros de dados semi-

estruturadas na forma de texto cont́ınuo, tais como descrições de produtos, receitas,

citações bibliográficas, endereço postal, anúncios classificados, etc. É um problema

prático importante que tem sido frequentemente abordado na literatura [64, 48, 73].

Genericamente, o objetivo principal é encontrar valores de atributos dispońıveis em

porções de texto não estruturadas. O resultado final do processo de extração varia,

mas geralmente, pode ser transformado, de modo a alimentar um banco de dados

para posterior processamento e análise.

Para ilustrar melhor este problema, considere a Figura 2.1. A Figura 2.1 (a)

representa um registro sem nenhuma estrutura expĺıcita (endereço postal). Este

registro contém informações relevantes, tais como: nome de pessoas, nome da rua,

número, código postal, etc, e não contém nenhum delimitador expĺıcito entre os

valores que o compõem. A Figura 2.1 (b) mostra o resultado para a extração con-

siderando este exemplo. Note que cada segmento de texto recebe um rótulo que

indica que o segmento de texto contém um valor do atributo indicado no rótulo.

5
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Eli Cortez - Rua 15 n 324 - Japiim 1 - 69075 - Manaus

Eli Cortez  Rua 15   n 324   Japiim 1   69075   Manaus

Nome Rua Número Bairro CEP Cidade

(a)

(b)

Figura 2.1: Exemplo de um registro de texto não estruturado(a) e resultado esperado
da extração (b).

Uma abordagem bastante comum para resolver este problema é o uso de técnicas

supervisionadas de aprendizagem de máquina, ou seja, com a utilização de um co-

junto de treinamento gerado por um usuário [9, 33, 58]. Também é posśıvel o uso

de técnicas não-supervisionadas, ou seja, com a utilização de um cojunto de dados

pré-existentes.

Os métodos atuais de extração de informação por segmentação de texto, ou

seja, métodos para resolver o problema de EIST, são baseados em modelos gráficos

probabiĺısticos [45, 64] aonde, os nós (estados) representam atributos e as arestas

(transições) representam as posśıveis estruturas dos registros de texto. Quando

devidamente treinados, esses modelos são capazes de prever, com extrema precisão,

seqüências de rótulos a serem atribúıdos a uma seqüência de segmentos de texto que

correspondem a valores de atributos.

O processo de aprendizagem, portanto, consiste em capturar caracteŕısticas ba-

seadas em conteúdo (estado), propriedades que caracterizam o domı́nio do atributos

(por exemplo, os valores t́ıpicos, termos que compõem os valores, formato dos valo-

res, etc), e caracteŕısticas de estrutura (transição) (por exemplo, o posicionamento

e a sequência dos valores textuais dos atributos, etc), que caracterizam a estrutura

dos registros no texto de entrada.
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Abordagem Proposta

Para aliviar a necessidade de dados de treinamento manualmente rotulados, métodos

recentes de EIST [1, 48] utilizam conjuntos de dados pré-existentes, tais como di-

cionários, bases de conhecimento e tabelas de referências, para o aprendizado de

caracteŕısticas baseadas em conteúdo. Tais caracteŕısticas são conhecidas por serem

muito eficazes, assim como as caracteŕısticas de estado em modelos sequenciais, por

exemplo, Conditional Random Fields (CRF) [45]. Além da economia de esforço

do usuário, o uso de conjuntos de dados pré-existentes também torna o processo

de aprendizagem de caracteŕısticas baseadas em conteúdo menos dependente dos

textos de entrada. Por exemplo, em [1] os autores propuseram o uso de tabelas de

referência no aprendizado de caracteŕısticas baseadas em conteúdo para a criação

de Modelos Ocultos de Markov capazes de extrair informações de referências bibli-

ográficas e endereços postais. Em [73] os autores utilizam a mesma ideia de explorar

tabelas de referência, mas, neste caso, os recursos são utilizados automaticamente

para treinar modelos baseados em CRF.

Em nosso trabalho, também exploramos essa idéia, e mostramos que carac-

teŕısticas baseadas em conteúdo aprendidas a partir de conjuntos de dados pré-

existentes também podem ser utilizadas para induzir a aprendizagem de carac-

teŕısticas relacionadas a estrutura dos registros. Como dito anteriormente, carac-

7
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teŕısticas baseadas em estrutura são utilizados como elementos de transição de es-

tados em modelos sequenciais. Assim, mostramos que a utilização de conjuntos

de dados pré-existentes permite o aprendizado não supervisionado de ambas carac-

teŕısticas, baseadas em conteúdo e relacionadas a estrutura [19, 22], um aspecto

único a nossa abordagem proposta.

Especificamente, neste trabalho, propômos uma abordagem não-supervisionada

para o problema de EIST. Nossa abordagem se baseia em informações dispońıveis em

dados pré-existentes, chamados de bases de conhecimento, para realizar a associação

de segmentos do texto de entrada com atributos de um determinado domı́nio. Para

isso, adotamos e exploramos um conjunto de caracteŕısticas eficazes baseadas em

conteúdo. A eficácia destas caracteŕısticas é explorada diretamente para o aprendi-

zado de caracteŕısticas baseadas em estrutura de registros textuais, sem nenhuma

intervenção humana.

Considere um conjunto de trechos de texto ricos em dados de onde precisa-se

extrair os dados contidos neles. Assumimos que todos os trechos deste conjunto

pertencem ao mesmo domı́nio (endereços postais, referências bibliográficas, classifi-

cados). Também assumimos a existência de um conjunto de dados pré-existentes,

que chamamos de bases de conhecimento.

Nossa abordagem para lidar com o problema de extração de informação por seg-

mentação de texto, em geral resume-se nos passos apresentados a seguir, e que são

ilustrados na Figura 3.1: (1) aprendizado de caracteŕısticas baseadas em conteúdo de

uma base de conhecimento; (2) utilização de caracteŕısticas baseadas em conteúdo

para a realização de um processo inicial de extração; (3) utilização do resultado

do processo de extração inicial para a indução automática de caracteŕısticas ba-

seadas em estrutura e (4) combinação de caracteŕısticas baseadas em conteúdo e

caracteŕısticas baseadas em estrutura para alcançar o resultado final da extração.

Logo, nossa abordagem baseia-se na hipótese de que é posśıvel utilizar bases de co-

nhecimento para o aprendizado não supervisionado de caracteŕısticas baseadas em
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Figura 3.1: Visão geral da abordagem proposta.

conteúdo e caracteŕısticas baseadas em estrutura.

Diferentes caracteŕısticas baseadas em conteúdo podem ser aprendidas a par-

tir do conhecimento impĺıcitamente codificado em bases de conhecimento, que são

exploradas pela nossa abordagem. Estas caracteŕısticas são: (1) Vocabulário de

Atributo, (2) Faixa de Valor do Atributo, e (3) Formato dos Valores do

Atributo. É importante salientar que estas caracteŕısticas baseadas tão somente

em conteúdo podem ser calculadas a partir de bases de conhecimento. Sendo assim,

elas são independentes do texto da entrada.

A caracteŕıstica Vocabulário de Atributo explora os termos comuns muitas

vezes compartilhados por valores de atributos textuais. A caracteŕıstica Faixa Va-
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lor do Atributo lida especificamente com atributos numéricos utilizando a média

e desvio padrão dos atributos numéricos dispońıveis na base de conhecimento. Por

fim, a caracteŕıstica Formato dos Valores do Atributo explora o estilo muitas

vezes utilizado para representar os valores dos atributos na base de conhecimento.

Cada uma destas caracteŕısticas explora diferentes propriedades do domı́nio de cada

atributo, assim, podemos dizer que elas são independentes, o que nos permite com-

biná-las por meio do operador disjuntivo Baysiano OU , também conhecido como

Noisy-OR-Gate [57].

Vale ressaltar que a nossa abordagem é capaz de realizar a extração de dados

relevantes utilizando apenas caracteŕısticas baseadas em conteúdo. Mas, há ca-

sos em que é posśıvel utilizar estas caracteŕısticas para a indução automática da

estrutura do texto de entrada. Para computar estas caracteŕısticas baseadas em

estrutura, é comum a construção de modelos gráficos que representam a probabili-

dade de transições de atributo dentro do texto de entrada (ou de qualquer texto da

mesma fonte). Nossa abordagem é capaz de construir automaticamente um modelo

gráfico probabiĺıstico baseado em Cadeias Ocultas de Markov, que chamamos de

MPS (Modelo de Posicionamento e Sequenciamento). Com as caracteŕısticas base-

adas em estrutura em mãos, podemos combinar as mesmas com as caracteŕısticas

baseadas em conteúdo visando melhorar a qualidade da extração.



Caṕıtulo 4

Métodos Propostos

Com base na nossa abordagem, produzimos uma série de resultados para lidar com

o problema da extração de informações por segmentação de texto de uma forma

não-supervisionada. Em particular, nós desenvolvemos, implementamos e avaliamos

vários métodos para EIST.

Para o caso em que os registros de entrada não estruturados são explicitamente

delimitados no texto de entrada, propomos um método chamado ONDUX [20, 22].

ONDUX (On Demand Unsupervised Information Extraction), é uma abordagem

probabiĺıstica não-supervisionada para EIST. Como outras abordagens não super-

visionadas, ONDUX utiliza informação dispońıvel em dados pré-existentes, mas,

ao contrário dos métodos propostos anteriormente, ele também conta com uma

estratégia muito eficaz para o aprendizado de caracteŕısticas estruturais do texto

de entrada. Mais especificamente, as caracteŕısticas estruturais automaticamente

aprendidas são exploradas para a disambiguação da extração de certos atributos

através de um passo de reforço. A etapa de reforço se baseia no seqüenciamento

e posicionamento de valores de atributos diretamente aprendidas sob demanda a

partir de dados de teste. Isto atribui ao ONDUX um elevado grau de flexibilidade e

resulta em eficácia superior, tal como demonstrado pela avaliação experimental com

fontes textuais de diferentes domı́nios.

11



12 CAPÍTULO 4. MÉTODOS PROPOSTOS

Também desenvolvemos um método chamado JUDIE [19], para lidar com entra-

das textuais que não contenham qualquer informação estrutural expĺıcita dispońıvel.

JUDIE (Joint Structure Discovery and Information Extraction) é um novo método

para extrair automaticamente registros semi-estruturadas de dados na forma de

texto cont́ınuo (por exemplo, citações bibliográficas, endereços postais, anúncios

classificados, etc) que não possuem delimitadores expĺıcitos entre eles. Enquanto

que, em métodos de extração, a estrutura dos registros é manualmente fornecida

através de um passo de formatação, JUDIE é capaz de detectar a estrutura de

cada registo individual a ser extráıdo sem qualquer assistência de usuários. Isto

é conseguido através de um novo algoritmo de descoberta de estrutura, que, dada

uma sequência de rótulos que representam valores de atributos potenciais, agrupa

esses rótulos em registos individuais a procura de padrões de repetições frequentes.

Também mostramos como integrar este algoritmo no processo de extração de in-

formações por meio de passos de refinamento sucessivos. Através de uma avaliação

experimental com conjuntos de dados diferentes em domı́nios distintos, comparamos

nosso método, com o métodos de extração de informação e concluimos que, mesmo

sem qualquer intervenção de usuários, JUDIE é capaz de alcançar resultados de

alta qualidade nas tarefas de descoberta de estrutura dos registros e extração de

informação.

Por fim, em [70], apresentamos um método chamado iForm que aplica a nossa

abordagem à tarefa de preenchimento automático de formulários da Web. iForm ex-

plora caracteŕısticas baseadas em conteúdo de valores que foram previamente subme-

tidos a formulários da Web e combina tais caracteŕısticas utilizando uma estrutura

Bayesiana. Através de extensa experimentação, mostramos que o uso do iForm é

viável e eficaz, e que o mesmo funciona bem mesmo quando poucas interação são

feitas com os formulários da Web, e alcança resultados de alta qualidade quando

comparado com outros métodos de preenchimento automático de formulários.



Caṕıtulo 5

Conclusões

Neste trabalho foi apresentado uma abordagem não supervisionada para lidar com

o problema de extração de informação por segmentação de texto. Esta aborda-

gem é capaz de aprender automaticamente caracteŕısticas baseadas em conteúdo de

conjuntos de dados pré-existentes. Contudo, diferente de qualquer outra aborda-

gem já existente, nossa abordagem explora as caracteŕısticas baseadas em conteúdo

para o aprendizado automático de caracteŕısticas estruturais do texto de entrada.

Para comprovar a viabilidade da abordagem que propusemos, utilizamos a mesma

na criação de diferentes métodos de extração, tais como: ONDUX [22, 20, 59], JU-

DIE [19] e iForm [69, 70].

A comparação de tais métodos com a métodos existentes na literatura, mostra

que a abordagem proposta é altamente eficaz para lidar com o problema de extração

de informação por segmentação de texto.

A seguir, listamos todas as publicações produzidas durante este trabalho de

doutorado. Primeiro listamos as publicações que constituem o núcleo desta tese.

Em seguida, listamos as publicações que estão relacionados com o problema de

extração de informação. Por fim, também listamos todas as outras publicações em

diferentes áreas de gerenciamento de dados.
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Abstract

In this work we propose, implement and evaluate a new unsupervised approach
for the problem of Information Extraction by Text Segmentation (IETS). Our ap-
proach relies on information available on pre-existing data to learn how to associate
segments in the input string with attributes of a given domain relying on a very ef-
fective set of content-based features. The effectiveness of the content-based features
is also exploited to directly learn from test data structure-based features, with no
previous human-driven training, a feature unique to our approach. Based on our
approach, we have produced a number of results to address the IETS problem in
a unsupervised fashion. In particular, we have developed, implemented and evalu-
ated distinct IETS methods, namely ONDUX, JUDIE and iForm. ONDUX (On
Demand Unsupervised Information Extraction) is an unsupervised probabilistic ap-
proach for IETS that relies on content-based features to bootstrap the learning of
structure-based features. Structure-based features are exploited to disambiguate
the extraction of certain attributes through a reinforcement step, which relies on
sequencing and positioning of attribute values directly learned on-demand from the
input texts. JUDIE (Joint Unsupervised Structure Discovery and Information Ex-
traction) aims at automatically extracting several semi-structured data records in
the form of continuous text and having no explicit delimiters between them. In
comparison with other IETS methods, including ONDUX, JUDIE faces a task con-
siderably harder, that is, extracting information while simultaneously uncovering
the underlying structure of the implicit records containing it. In spite of that, it
achieves results comparable to the state-of- the-art methods. iForm applies our
approach to the task of Web form filling. It aims at extracting segments from a
data-rich text given as input and associating these segments with fields from a tar-
get Web form. The extraction process relies on content-based features learned from
data that was previously submitted to the Web form. All of these methods were
evaluated considering different experimental datasets, which we use to perform a
large set of experiments in order to validate our approach and methods. These
experiments indicate that our proposed approach yields high quality results when
compared to state-of-the-art approaches and that it is able to properly support IETS
methods in a number of real applications.

Keywords: Information Extraction, Database, Web Data Management
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Chapter 1

Introduction

Over the last years, there has been a steady increase in the number and types of

source of textual information available in the World-Wide Web. Examples of such

sources are e-shops, digital libraries, social networks, blogs, etc. In most cases, these

sources are freely accessible, cover a variety of topics and subjects, provide informa-

tion in distinct formats and styles, and do not impose any rigid publication format.

In addition, they are constantly kept up-to-date by users and organizations. In fact,

textual Web sources are typically user-oriented, i.e., they are built for users to con-

sume their contents and the ease of interaction they provide have made the number

of users that heavily interact with them grow every day. Figure 1.1 illustrates some

popular sources of textual information currently available on the Web.

Through the eyes of data management scientists, these sources constitute large

repositories of valuable data on a variety of domains. Depending on the type of

each source, one can find in them data referring to personal information, products,

publications, companies, cities, weather, etc., from which it is possible to perform

such tasks as to infer relationships, to learn user preferences and to detect trends,

to name a few.

However, the same features that have made textual Web sources so useful and

popular also impose important restrictions on the way data they contain can be

manipulated. Particularly, data-rich text snippets, such as product descriptions,

bibliographic citations, postal addresses, classified ads and movie reviews, are in-

1



2 CHAPTER 1. INTRODUCTION

Textual Sources
and Formats

Postal Addresses

Bibliographic 
References

Classified Ads

Recipes

uredtc  Rur et cs on rdU s

Movie Reviews

Curriculum VITAE

Product Description

Job Offers

Plain Text

Social Networks
E-Shops

PDF

HTM
L
<XML>

Document Formats

Figure 1.1: Examples of popular sources of textual information available in the Web
nowadays.

herently unstructured and their content can hardly be subject to some form of

automated processing. In addition, it is commonly difficult to automatically iden-

tify data of interest that is implicitly present in such sources embedded with pieces

of non-relevant text.

As an example, in Figure 1.2, we show a real web page containing a cooking

recipe. As it can be noticed, the recipe information, which constitute data-rich

text snippets, as stated earlier, is embedded within web ads, free texts, cooking

directions and reviews. In addition, the data available within these snippets is

loosely structured.

Nevertheless, the abundance and popularity of these online sources of relevant

data have attracted a number of research efforts to address problems related to them,

such as crawling [7, 72], extracting [12, 44, 64], querying [34, 65], mining [11, 37]

and others [13, 47].

In particular, the extraction problem, commonly know as Information Extraction

(IE) in the literature [64], refers to the automatic extraction of structured informa-
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Quantity    Unit    Ingredient

Unstructured Records

Figure 1.2: Example of a real web page containing data-rich text snippets.

tion such as entities, relationships between entities, and attributes describing entities

from noisy unstructured sources. It derives from the necessity of having unstruc-

tured data stored in structured formats (tables, XML), so that it can be further

queried, processed and analyzed. This problem is the main subject of this work.

The IE problem encompasses many distinct sub-problems such as Named En-

tity Recognition (NER) [60, 62], Open Information Extraction [5, 49], Relationship

Extraction [31, 51] and Text Segmentation[9, 22, 64].

Information Extraction by Text Segmentation (IETS) is the problem of seg-

menting unstructured textual inputs to extract implicit data values contained in

them. Considering the practical and theoretical importance of the IETS prob-
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lem [1, 9, 19, 22, 45, 48, 64, 73], we proposed, implemented and evaluated an unsu-

pervised approach to address it. Our approach relies on pre-existing data to provide

features for a learning process, alleviating the need for manually labeled data for

training. Next, we present in more details the definition of the IETS problem and

discuss the research challenges faced.

1.1 Information Extraction by Text Segmentation

Information Extraction by Text Segmentation (IETS) is the problem of extracting

attribute values occurring in implicit semi-structured data records in the form of con-

tinuous text, such as product descriptions, bibliographic citations, postal addresses,

classified ads, etc. It is an important practical problem that has been frequently

addressed in the recent literature [48, 64, 73]. More specifically, the main goal is

to find attribute values within unstructured textual snippets. The final output of

the extraction process varies; but usually, it can be transformed so as to populate a

database for further processing and analysis.

To better illustrate this problem, consider Figure 1.3. Figure 1.3(a) depicts a

real unstructured record (postal address). This record contains relevant information

such as: person name, street name, house number, zip code, etc., and does not

contain any explicit delimiter between the values composing it. Figure 1.3(b) shows

an expected output for this example, where each segment receives a label indicating

that the text segment contains a value of an attribute.

Eli Cortez - Rua 15 n 324 - Japiim 1 - 69075 - Manaus

Eli Cortez  Rua 15   n 324   Japiim 1   69075   Manaus

Name Street Number Neigh. Zip City

(a)

(b)

Figure 1.3: Example of an unstructured textual record (a) and an expected output
(b).
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A fairly common approach to solve this problem is the use of machine learning

techniques, either supervised, i.e., with human-driven training [9, 33, 58], or unsu-

pervised, i.e., with training provided by some form of pre-existing data source [1,

15, 19, 22, 48, 73].

Current IETS methods, i.e., methods for solving the IETS problem, rely on

probabilistic graph-based models [45, 64] in which nodes (states) represent attributes

and edges (transitions) represent the likely structures of the data records. When

properly trained, such models are able to accurately predict a sequence of labels to

be assigned to a sequence of text segments corresponding to attribute values.

The learning process thus consists in capturing content-based (or state) features,

which characterize the domain of the attributes (e.g., typical values, terms compos-

ing them, their format, etc.), and structure-based (or transition) features (e.g., the

positioning and sequencing of attribute values, etc.), which characterize the struc-

ture of the records within the source text.

1.2 Main Contributions

To alleviate the need for manually labeled training data, recent IETS methods [1, 48]

rely on pre-existing datasets such as dictionaries, knowledge bases and references ta-

bles, from which content-based features (e.g., vocabulary, value range, writing style)

can be learned. Such features are known to be very effective as state features in

sequential models, such as Conditional Random Fields (CRF) [45]. Besides saving

user effort, using pre-existing datasets also makes the process of learning content-

based features less dependent from the input texts. For instance, Agichtein and

Ganti [1] proposed the use of reference tables to learn content-based features in

order to create Hidden Markov Models capable of extracting information from bib-

liographic references and postal addresses. Zhao et al. [73] rely on the same idea of

exploiting reference tables, but, in this case, the features are used to automatically
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train CRF models.

In our work, we have further exploited this idea and have shown that content-

based features learned from pre-existing datasets can also be used to bootstrap the

learning of structure-based features, which are used as transition features in sequen-

tial models. Thus, it follows that these datasets allow the unsupervised learning of

both content-based and structure-based features [19, 22].

Specifically, in this work we propose an unsupervised approach to the IETS

problem. Our approach relies on information available on pre-existing data, namely

knowledge bases, to learn how to associate segments in the input string with at-

tributes of a given domain relying on a very effective set of content-based features.

The effectiveness of the content-based features is also exploited to directly learn

from test data structure-based features, with no previous human-driven training, a

feature that is unique to our approach.

Based on our approach, we have produced a number of results to address the

problem of information extraction by text segmentation in a unsupervised fashion.

Particularly, we have developed, implemented and evaluated distinct IETS methods.

For the case where the input unstructured records are explicitly delimited in

the input text, we propose a method called ONDUX [20, 22, 59]. ONDUX (On

Demand Unsupervised Information Extraction) is an unsupervised probabilistic ap-

proach for IETS. Like other unsupervised IETS approaches, ONDUX relies on infor-

mation available on pre-existing data, but, unlike previously proposed methods, it

also relies on a very effective set of content-based features to bootstrap the learning

of structure-based features. More specifically, structure-based features are exploited

to disambiguate the extraction of certain attributes through a reinforcement step.

The novel reinforcement step relies on sequencing and positioning of attribute val-

ues directly learned on-demand from test data. This assigns to ONDUX a high

degree of flexibility and considerably improves its effectiveness, as demonstrated by

the experimental evaluation we report with textual sources from different domains,
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in which ONDUX is compared with a state-of-art IETS approach. Some applica-

tions use ONDUX to perform information extraction tasks, one example is Ciência

Brasil1 [42, 43], a research social network for brazilian scientists.

We have also developed a method called JUDIE [19], for dealing with textual in-

puts that do not contain any explicit structural information available. JUDIE (Joint

Unsupervised Structure Discovery and Information Extraction) is a method for au-

tomatically extracting semi-structured data records in the form of continuous text

(e.g., bibliographic citations, postal addresses, classified ads, etc.) and having no ex-

plicit delimiters between them. JUDIE is capable of detecting the structure of each

individual record being extracted without any user assistance. This is accomplished

by a novel Structure Discovery algorithm that, given a sequence of labels repre-

senting attributes assigned to potential values, groups these labels into individual

records by looking for frequent patterns of label repetitions among the given se-

quence. In comparison with other IETS methods, including ONDUX, JUDIE faces

a task considerably harder, that is, extracting information while simultaneously un-

covering the underlying structure of the implicit records containing it. Through an

extensively experimental evaluation with different datasets in distinct domains, we

compare JUDIE with state-of-the-art information extraction methods and conclude

that, even without any user intervention, it is able to achieve high quality results

on the tasks of discovering the structure of the records and extracting information

from them.

As it can be noticed both, ONDUX and JUDIE, rely on information available

on pre-existing data to perform the extraction task. To support these methods, we

presented in [66] a strategy for automatically obtaining datasets from Wikipedia.

The achieved results suggest that the developed strategy is valid and effective, and

that IETS methods can achieve a very good performance if the datasets generated

have a reasonable number of representative values on the domain of the data to be

1http://www.pbct.inweb.org.br/pbct/
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extracted.

Finally, we show how our approach was applied by a method called iForm to the

task of Web form filling [69, 70]. iForm is a part of a master thesis presented in [71].

As part of the work here presented we have developed the extraction engine that

supports this method. In this case, the aim is at extracting segments from a data-

rich text given as input and associating these segments with fields from a target Web

form. The extraction process relies on content-based features learned from data that

was previously submitted to the Web form. Through extensive experimentation, we

show that the use of our approach in iForm is feasible and effective, and that it

works well even when only a few previous submissions to the input interface are

available, thus achieving high quality results when compared to the baseline.

Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 discusses related work. Chap-

ter 3 presents basic concepts and describes our approach to exploit pre-existing

datasets to support IETS methods. Chapter 4 presents our method called ON-

DUX and all experiments we have performed to evaluate its performance in com-

parison to other information extraction methods. Chapter 5 presents JUDIE, our

information extraction method that is able to extract information from text and ca-

pable of detecting the structure of each individual records being extracted without

any user assistance. Chapter 6 presents iForm, a method for dealing with the Web

form filling problem that relies on our proposed approach. Finally, in Chapter 7 we

present our conclusions and discuss future work.



Chapter 2

Related Work

In the literature, different approaches have been proposed to address the problem of

extracting valuable data from the Web. In this Chapter we present an overview of

such approaches. We begin by presenting a broad set web extraction methods and

tools we have studied. Following a taxonomy previously used in the literature [44],

they are divided in distinct groups according to their main approach. These groups

are: Languages for Wrapper Development, Wrapper Induction Methods, NLP-based

Methods, Ontology-based Methods and HTML-aware Methods. Next we specifically

present probabilistic graph-based methods, supervised and unsupervised, and dis-

cusses their main characteristics in comparison to our proposed approach.

2.1 Web Extraction Methods and Tools

By the early 2000s, several tools and methods have been discussed in the literature

for extracting valuable data from the Web. A survey on this early work is presented

in [44], where the authors proposed a taxonomy for grouping different web extraction

methods and tools based on the main approach used by each method. Here we

adopted the same taxonomy. In what follows, we describe the main characteristics

of the methods and tools belonging to each group.

9
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2.1.1 Languages for Wrapper Development

One of the first initiatives for addressing the problem of extracting valuable data

from the Web was the use of specialized programs able to identify data of interest

and map them to some suitable format as, for instance, XML or relational tables.

These programs are called wrappers. Different languages were specially designed to

assist users in developing wrappers. Such languages were proposed as alternatives

to general purpose languages such as Perl and Java, which were prevalent at that

time for this task.

Some of the best known tools that adopt this approach are Minerva [23], TSIM-

MIS [35] and Web-OQL [4]. Although such languages provided effective approaches

for wrapper generation, their main drawback is that they required manual wrapper

development. Due to such a limitation, efforts have been made to automate the

wrapper generation process.

2.1.2 Wrapper Induction Methods

There were also efforts to use machine-learning techniques to semi-automatically

induce wrappers [36, 41, 56]. In general, these approaches consist of using training

examples to generate automata that recognize instances in contexts similar to the

ones of the given examples.

The approach proposed by Kushmerick [41] and adopted in the WEIN system

relies on examples from the source to be wrapped. The main drawbacks of this work

are: (1) it does not deal with missing or out-of-order components and (2) although

it identifies the need for extraction of complex objects present in nested structures,

the solution provided is computationally intractable and has not been implemented.

These two features of semi-structured data extraction are addressed in Soft-

Mealy [36] and Stalker [56]. Both systems also generate wrappers, generalizing given

examples through machine-learning techniques, and are very effective in wrapping

several types of Web page. The main problem with SoftMealy is that every possible
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absence of a component and every different ordering of the components must be

represented beforehand by an example. Stalker [56] can deal with such variations in

a much more flexible way since each object component is extracted independently

through a top-down decomposition procedure.

The main drawback to all these approaches is that the extraction process relies

on the knowledge of the structure of HTML pages. In WEIN and SoftMealy, for

example, pages are assumed to have a defined structure (e.g., a head, then a body

with a set of tuples, and then a tail) that must be flat. This prevents the exclusive

extraction of the objects (or sub-objects) of interest and might generate extraction

difficulties if unwanted text portions (such as advertisements) occur between tuples

or tuple components in the page body. In Stalker, the extraction of nested objects

is possible but the approach also relies on a previous description of the entire source

page.

2.1.3 NLP-based Methods

Besides wrapper induction, there were other approaches for learning extraction pat-

terns that were more suitable for extracting data from semi-structured text such as

newspaper classified advertisements, seminar announcements and job posting, which

present grammatical elements. In general, these approaches use techniques typical

of Natural Language Processing (i.e., semantic class, part-of-speech tagging, etc.)

sometimes combined with the recognition of syntactic elements (delimiters). This

is the case of Rapier [54] and SRV [33]. WHISK [68] goes beyond and addresses

a large spectrum of types of document ranging from rigidly formatted to free text.

For formatted text, this system has a behavior that is closer to wrapper induction

systems like WEIN [41].

Recently, several new methods that also explore Natural Language Processing

techniques have been proposed to deal with the Open Information Extraction [30]

problem. In this context, the goal is to perform web scale extraction from all types of
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textual document available on the Web. The system makes a single data-driven pass

over its dataset and extracts a large set of relational tuples without requiring any

human input. Banko et al. [5, 6] introduce a system called TEXTRUNNER, an open

information extraction system that is able to extract tuples from large datasets and

also allow their exploration via user queries. Differently from our proposed approach,

these open information extraction approaches heavily rely on linguistic information

requiring the presence of grammatical elements.

2.1.4 Ontology-based Methods

An ontology-based approach to extracting data from Web sources was proposed by

Embley et al. [28]. This approach uses a semantic data model to provide an ontology

that describes the data of interest, including relationships, lexical appearances, and

context keywords. By parsing this ontology, a relational database schema and a

constant/keyword recognizer are automatically generated, which are then used to

extract the data that will populate the database. Prior to the application of the

ontology, the approach requires the application of an automatic procedure to extract

chunks of text containing data “items” (or records) of interest [29]. Then, the

extraction process proceeds from the set of records extracted. Not only this approach

requires the user to provide a conceptual description of the data to be extracted,

but relies mainly on the expected contents of the pages, which is anticipated by

the pre-specified ontology. Further, this approach requires a specialist to build the

ontology using a notation specially designed to this task.

2.1.5 HTML-aware Methods

Crescenzi et al. [24] proposed RoadRunner, a method that heavily explores the

inherent features of HTML documents to automatically generate wrappers. Road-

Runner works by comparing the HTML structure of two (or more) given sample

pages belonging to a same “page class”, generating as a result a schema for the data
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contained in the pages. To accurately capture all possible structural variations oc-

curring on pages of a same page class, it is possible to provide more than two sample

pages. The extraction process is based on an algorithm that compares the tag struc-

ture of the sample pages and generates regular expressions that handle structural

mismatches found between the two structures. It should be noted that the process

is fully automatic and no user intervention is required, a feature that was unique to

RoadRunner by that time. Although very effective, RoadRunner relies on specific

HTML features to uncover the structure of the objects to be extracted. In cases

like that, fully automated tools tend to make lots of misinterpretations, in the sense

that they can extract several unwanted data.

There are also methods that rely on the representation of the HTML documents

as DOM trees. Reis et al. [61] and Dalvi et al. [25] propose techniques based on

tree edit distance to perform the extraction task. In [74] the authors propose the

use of both the visual content of the HTML pages as displayed on a browser and

the HTML DOM tree to perform the extraction.

More recently, a set of methods have been proposed for detecting and extracting

information available on HTML tables. A system that is able to explore tabular

information available within HTML pages is described by Cafarella et al. [11]. For

this, the Webtables system relies on the HTML markup to automatically detect the

occurrence of tables and them extract attribute-value pairs. Following the same idea

of exploring HTML structures, such as tables and lists, Elmeleegy et al. [27] propose

a techniques that is able to not only extract information from HTML tables, but

also lists, thus combining HTML markup characteristics with string alignment.

As it can be noticed, all of these approaches rely on the regularity of HTML

documents and heavily depend on the HTML tags (document structure) to extract

information of interest. In some cases, this assigned to these approaches good ex-

traction results, however, precludes their usage in a large number of textual sources

that are available on the Web. As seen in Figure 1.1, the scenario that information
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extraction approaches faces nowadays includes textual sources in different formats

and styles, and more specifically, free texts without any tag to explicitly indicate

data of interest. In order to deal with these general textual sources the use of

probabilistic graph-based approaches has been proposed, as described below.

2.2 Probabilistic Graph-based Methods

Due to limitations of the extraction methods that are based on the HTML structure

of web pages, new methods, based on probabilistic graph-based approaches such as

Hidden Markov Models (HMM) and Conditional Random Fields (CRF) were cre-

ated to tackle the problem of extracting valuable data from textual sources. A fairly

common approach to solve this problem is the use of machine learning techniques, ei-

ther supervised, i.e., with human-driven training, or unsupervised, i.e., with training

provided by some form of pre-existing data source.

2.2.1 Supervised Probabilistic Graph-Based Methods

One of the first approaches in the literature addressing the extraction problem with a

probabilistic graph-based approach was proposed by Freitag and McCallum [33]. It

consisted in generating independent Hidden Markov Models (HMM) for recognizing

values of each attribute. This approach was extended in the DATAMOLD tool [9],

in which attribute-driven (or internal) HMM are nested as states of external HMM.

These external HMM aim at modeling the sequencing of attribute values on the

implicit records. Internal and external HMM are manually trained with user-labeled

text segments. Experiments over two real-life datasets yielded very good results in

terms of the accuracy of the extraction process.

Later on, Conditional Random Fields (CRF) models were proposed as an al-

ternative to HMM for the extraction of valuable information from text [45]. In

comparison with HMM, CRF models are suitable for modeling problems in which
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state transitions and emissions probabilities may vary across hidden states, depend-

ing on the input sequence. Peng and McCallum [58] proposed a supervised method

for extracting bibliographic data from research papers based on CRF that showed

good results in the experimental evaluation they conducted.

Kristjansson et al. [40] also proposed the use of CRF to the task of filling web

forms with values available in unstructured texts. In this context, it is needed to

extract valuable data from these texts and submit them to a pre-defined web form

with different form fields. Their interactive information extraction system assists

the user in filling in form fields while giving the user confidence in the integrity of

the data. The user is presented with an interactive interface that allows both the

rapid verification of automatic field assignments and the correction of errors.

Although effective, these supervised information extraction approaches based

on graphical models such as HMM and CRF usually require users to label a large

amount of training input documents. There are cases in which training data is hard

to obtain, particularly when a large number of training instances is necessary to

cover several features of the test data.

2.2.2 Unsupervised Probabilistic Graph-based Methods

To address the problem of requiring large amounts of manually created training sets,

recent approaches presented in the literature propose the use of pre-existing data

for easing the training process [1, 18, 48, 73]. These approaches take advantage of

the existence of large amounts of structured datasets that can be used with little or

no user effort.

According to the strategy of relying on pre-existing data, models for recognizing

values of an attribute are generated from values of this attribute occurring in a

dataset previously available. Mansuri and Sarawagi [48] proposed a method based

on Conditional Random Fields to extract valuable data from unstructured textual

portions. The proposed method relies on pre-existing data to learn content-based
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features and hand-labeled training sets to learn structure-related features.

Agichtein and Ganti [1] and Zhao et al. [73] proposed methods that are able to

train a model relying only on a pre-existing dataset and, then, use it for recogniz-

ing values of attributes among segments of the input string. No manually labeled

training input strings are required for this. Once attribute values are recognized,

records can be extracted. These methods assume that attributes values in the input

text follow a single global order, which is learned from a sample batch of the test

instances. The difference between the method proposed by Agichtein and Ganti and

the one proposed by Zhao et al. is that the first relies on Hidden Markov Models

and the second relies on Conditional Random Fields. Despite this, both follow the

same assumptions regarding a global attribute order in the input text.

The main difference between our proposed approach and the ones presented

by Agichtein and Ganti, Mansuri and Sarawagi and Zhao et al., is the way that

structure-related features [64] are learned. In our approach these features, when

necessary, are captured by a specific model, which, as demonstrated in our ex-

periments, is flexible enough to assimilate and represent variations in the order of

attributes in the input texts and can be learned without user-provided training.

The methods proposed by Agichtein and Ganti [1] and Zhao et al. [73] are also ca-

pable of automatically learning structure-related features, but they cannot handle

distinct orderings on the input, since they assume a single total order for the input

texts. These makes the application of these methods difficult to a range of practical

situations. Thus, in practical applications, our proposed approach can be seen as

the best alternative. The method proposed in [48] can handle distinct ordering, but

user-provided training is needed to learn the structure-related features, similarly to

what happens with the standard supervised CRF model, thus increasing the user

dependency and the cost to apply the method in several practical situations.

A similar strategy is used by Chuang et al. [15]. However, when extracting

data from a source in a given domain, this approach may take advantage not only
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from pre-existing datasets, but also from other sources containing data on the same

domain, which is extracted simultaneously from all sources using a 2-state HMM for

each attribute. Record extraction is addressed in a unsupervised way by aligning

records from the sources being extracted.

FLUX-CiM [18, 21] is an unsupervised approach for extracting metadata from

bibliographic citations that relies on the same ideas adopted by our approach. While

FLUX-CiM also relies on content-based features learned from pre-existing data, it

uses a set of domain-specific heuristics based on assumptions regarding bibliographic

metadata to perform the extraction task. This includes the use of punctuation as

attribute value delimiters, the occurrence of single values for attributes other than

author names, etc. Thus, our proposed approach can be seen as a generalization of

FLUX-CiM.

Michelson and Knoblock [53] presented an unsupervised approach to exploit

pre-existing data for extraction. To accomplish this, initially the user has to specify

a large repository with distinct sets of pre-existing data. Once this repository is

chosen, using simple vector-space model similarities between the input text and the

available sets of pre-existing data, the system automatically finds the most suitable

set for the given extraction task. Now that a set of pre-existing data was chosen,

the system relies on predefined string distance metrics such as: Jaro-Winkler and

Smith-Waterman, and fine-tuned thresholds to perform the extraction of valuable

data. This work differs from our proposed approach in the sense that it relies on the

use of predefined string similarity functions other than content-based features based

on vocabulary. Moreover, the proposed system requires the availability of large pre-

existing datasets in order to perform the extraction task. In our approach, this is

alleviated since, when possible, it is able to automatically induce structure-related

features from content-based features, helping the extraction process.

In order to support these unsupervised extraction methods that have been re-

cently proposed in the literature, Chiang et al. [14] developed a system called Au-
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toDict that is able to automatically discover dictionaries to support unsupervised

probabilistic graph-based methods. Moreover, Serra et al. [66] show that Wikipedia

can be used to support information extraction methods. Thus, these works show

that is feasible to acquire pre-existing structured datasets in order to create unsu-

pervised extraction methods.



Chapter 3

Exploiting Pre-Existing Datasets

to Support IETS

This chapter describes in detail our proposed approach for exploiting pre-existing

datasets to support Information Extraction by Text Segmentation methods. First

we present a brief overview of our approach and introduce the concept of knowledge

base. Next, we discuss all the steps involved in our approach, including how to learn

content-based features from knowledge bases, how to automatically induce structure-

based features with no previous human-driven training, a feature that is unique to

our approach, and how to effectively combine these features to label segments of a

text input.

3.1 Overview

Consider a set of data-rich input text snippets from which we need to extract data

containing in them. We assume that all snippets in this set belong to the same

application domain (e.g., product descriptions, bibliographic citations, postal ad-

dresses, real estate classified ads, etc). We also assume the existence of a dataset on

the same domain as the input set, which we call Knowledge Base.

Our proposed approach to tackle the information extraction by text segmenta-

19
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Figure 3.1: Overview of our proposed approach.

tion problem, relies on the following steps, which are illustrated in Figure 3.1: (1)

learn content-based features from a knowledge base, (2) use the learned content-

based features in an initial extraction process, (3) explore the outcome of the initial

extraction process to automatically induce structure-based features and (4) com-

bine content-based features with structure-based features to achieve a final extrac-

tion result. Thus, our proposed approach relies on the hypothesis that the usage

of knowledge bases allow for the unsupervised learning of both content-based and

structure-based features.

Different content-based features can be learned from the knowledge implicitly
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encoded in the knowledge bases, which are exploited by our approach. These features

are: (1) attribute vocabulary, (2) attribute value range and (3) attribute value

format. A very important point to stress regarding these content-based features is

the fact that they can be computed from previously available knowledge bases and,

thus, they are independent of the target input text corpus, that is, these features

are input-independent.

The attribute vocabulary feature exploits the common terms often shared by

values of textual attributes. The attribute value range feature specifically deals

with numeric attributes using the average and the standard deviation of the values

of numeric attributes available on the knowledge base. Finally, The attribute value

format feature exploits the writing styles often used to represent values of different

attributes in the knowledge base (e.g., url, date, telephone). We assume that these

features exploit different properties of the attribute domain, thus, we can say they are

independent, what allows us to combine them by means of the Bayesian disjunctive

operator or, also known as Noisy-OR-Gate [57].

As it can be noticed by the experiments we have performed, our approach is

able to perform the extraction of valuable data relying only on content-based fea-

tures. However, there are cases in which we can further exploit these features to

automatically induce structure-based features and improve the quality of the ex-

traction results. For computing such structure-based features, it is common to use a

graph model that represents the likelihood of attribute transitions within the input

text (or any other input text from the same source). We use a probabilistic HMM-

like graph model that we call PSM (Positioning and Sequencing Model). With the

structure-based features in hand, we can use them to improve the initial extraction

that resorted only on content-based features.

In the following we present the concept of knowledge base and show how to learn

content-based features from such knowledge bases. We also show how to induce

structure-based features from content features and how to automatically combine



22 CHAPTER 3. EXPLOITING PRE-EXISTING DATASETS

these features using a Bayesian disjunctive operator.

3.2 Knowledge Bases

A Knowledge Base is a set of pairs K = {〈a1, O1〉, . . . , 〈an, On〉} in which each ai is

a distinct attribute and Oi is a set of strings {oi,1, . . . , oi,ni
} called occurrences. Intu-

itively, Oi is a set of strings representing plausible or typical values for an attribute

ai.

K ={〈Neigh., ONeigh.〉, 〈Street, OStreet〉, 〈Bathrooms,OBathrooms, Phone,OPhone〉}
ONeighborhood ={“Regent Square”,“Milenight Park”}

OStreet ={“Regent St.”,“Morewood Ave.”,“Square Ave. Park”}
OBathrooms ={“Two Bathrooms”,“5 Bathrooms”}

OPhone ={“(323) 462-6252”,“171 289-7527”}

Figure 3.2: A simple example of a Knowledge Base.

In Figure 3.2 we illustrate a very simple example of a knowledge base which

includes only four attributes: Neighborhood, Street, Bathrooms, and Phone. Notice

that, a knowledge base contains common words that usually occur as attribute

values, and given the fact that there are several sources of structured information

available, such as FreeBase and Wikipedia, its construction process can be regarded

as simple [14, 66].

In fact, given a data source on a certain domain that includes values associated

with fields or attributes, building a knowledge base is a simple process that consists

in creating pairs of attributes and sets of occurrences. Notice that the knowledge

bases implicitly encode domain knowledge. Thus, they are a very suitable source for

learning content-based features.

Some IETS methods [1, 48] rely on pre-existing datasets such as dictionaries and

references tables, from which content-based features (e.g., vocabulary, value range,

format) can be learned. For instance, Mansuri and Sarawagi [48] proposed a method

that uses words stored in dictionaries. The Unsupervised CRF method proposed
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in [73] requires full records stored in reference tables. Our proposed methods, ON-

DUX [22] and JUDIE [19] rely on sets of attribute values stored on a knowledge

base, as defined earlier. To simplify the terminology, we will use, from now on, the

term knowledge base to refer to all of these kinds of datasets.

3.3 Learning Content-based Features

All content-based features we use can be computed from a knowledge base. Con-

sider an attribute A and let vA be a set of typical values for this attribute. Then,

for any segment of tokens 〈xi, . . . , xj〉 from the input text, we can compute the

value of a feature function gk(〈xi, . . . , xj〉, A). Intuitively, gk returns a real number

that measures how well a hypothetical value formed by tokens in the text segment

〈xi, . . . , xj〉 follows some property of the values in the domain of A represented by

vA [64]. Obviously, the accuracy of such functions often depends on how representa-

tive vA is with respect to the values in the domain of A. The content-based features

we consider in our approach are described below.

3.3.1 Attribute Vocabulary

This feature exploits the common vocabulary often shared by values of textual at-

tributes (e.g., neighborhood and street names, author names, recipe ingredients,

etc.). To capture this property, we resort to a function called AF (Attribute Fre-

quency) [52], which estimates the similarity between a given value and the set of

values of an attribute. In our case, the function AF is used to estimate the simi-

larity between the content of a candidate value s and the values of an attribute A

represented in the knowledge base. Function AF is defined as follows:

AF (s, A) =

∑
t∈T (A)∩T (s)

fitness(t, A)

|T (s)| (3.1)

In Equation 3.1, T (A) is the set of all terms found in the values of attribute A



24 CHAPTER 3. EXPLOITING PRE-EXISTING DATASETS

in the knowledge base and T (s) is the set of terms found in a candidate value s.

The function fitness(t, A) evaluates how typical a term t is among the values of

attribute A. It is computed as follows:

fitness(t, A) =
f(t, A)

N(t)
× f(t, A)

fmax(A)
(3.2)

where f(t, A) is the number of distinct values of A that contain the term t, fmax(A)

is the highest frequency of any term among the values of A, and N(t) is the total

number of occurrences of the term t in all attributes represented in the knowledge

base.

The first fraction in Equation 3.2 expresses the likelihood of term t to be part

of a value of A according to the knowledge base. This fraction is multiplied by

a normalization factor in the second fraction. This prevents attributes with many

values in the knowledge base from dominating and is also useful for making the term

frequency comparable among all attributes.

As an example, consider the text segment s =“Regent Park”, the knowledge base

presented in Figure 3.2 and the attribute Neighborhood available in this knowledge

base. According to this setting, A =neighborhood, T (neighborhood) = {regent, square,

milenight, park} and T (s) = {regent, park}.

We note that although we could have used any other similarity function, for

instance, based on the Vector Space Model [63], experiments reported in the liter-

ature [18, 19, 22, 52] have shown that AF is very effective for dealing with small

portions of texts such as the ones typically found in candidate values. It is also

worth mentioning that we use inverted indexes over the knowledge base to speed up

the computation of this content-based feature.
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3.3.2 Attribute Value Range

For the case of numeric candidate values (e.g., page number, year, phone number,

price, quantity, etc.) textual similarity functions such as AF (Equation 3.1) do not

work properly. Thus, for dealing with these candidate values, a proper content-based

feature function is needed. We assume, as proposed in [2], that the values of numeric

attributes follow a Gaussian distribution. Based on this assumption, we measure

the similarity between a numeric value vs present in a candidate value s and the set

of values vA of an attribute A in the knowledge base, by evaluating how close vs is

from the mean value of vA according to its probability density function. For that, we

use the function NM (Numeric Matching) normalized by the maximum probability

density of vA, which is reached when a given value is equal to the average1. This

function is given by

NM(s, A) = e
−
vs − µA

2σ2
A (3.3)

where σA and µA are, respectively, the standard deviation and the average of values

in vA, and vs is the numeric value of s. Notice that when vs is close to the average of

values in vA, NM(s, A) is close to 1. When vs assumes values far from the average,

the similarity tends to zero.

In many cases, numeric values in the input texts may include special characters

(e.g., prices and phone numbers). Thus, prior to the application of the NM func-

tion, these characters are removed and the remaining numbers are concatenated. We

call this process Normalization. For instance, the string “412-638-7273” is normal-

ized to form a numeric value 4126387273 that can be applied to the function NM .

Normalization is also performed over numeric values that occur in the knowledge

base.

1The maximum probability density of vA is 1/
√
2πσ2.
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3.3.3 Attribute Value Format

In our approach, the common style often used to represent values of some attributes

is also considered as a feature. Content-based feature functions based on this aspect

evaluate how likely are sequences of symbols forming a string in the input text. For

this, typical sequences of symbols occurring on the values of an attribute in the

knowledge base are learned. By using such features, it is possible to capture specific

formatting properties of URLs, e-mails, telephone numbers, etc. In early methods,

these features were learned over training data [1, 48]. In our approach, we show that

is possible to compute them over data available in the knowledge base.

Again, let vA be the set of values available for an attribute A in the knowledge

base. We automatically learn a sequence Markov model mA that captures the format

style of the values in vA. This model is similar to the inner HMM used in [9] and is

also applied to capture the format of values as a state feature.

For that, we first tokenize each value of vA on white-spaces. Using a taxonomy

proposed in [9], we encode this value as a sequence of symbol masks or simply masks.

A mask is a character class identifier, possibly followed by a quantifier. Figure 3.3

illustrates an example of a taxonomy of symbols. As it can be notice, at the top

most level there is no distinction among symbols, at the next level, they are divided

into Numbers and Words. The masks used to encode the input textual values are

on the leaves of the taxonomy.

All

2-digits Others

Numbers Words

\d\d \d+

Chars Multi-letter

[A-Z] [a-z] [A-Z]+ [a-z]+ [A-Z]+[a-z]+

Figure 3.3: Example of a Taxonomy of Symbols.

Then, the model mA is generated based on these masks, so that each node n
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Start [A-Z][a-z]+ [A-Z][a-z]+.

End

100% 75%

66.66%

33.33%

25%

Figure 3.4: A Markov model that represents the format of the values of the attribute
Street.

corresponds to a mask that represents the values of vA. An edge e between nodes

ni and nj is built if ni is followed by nj in the masks. Thus, each value in vA can

be described by a path in mA.

To illustrate this concept, consider the knowledge base presented in Figure 3.2.

As stated earlier, it is possible to build a Markov Model for each attribute, Neigh-

borhood, Street, Bathrooms and Phone. Encoding the values of the attribute Street

according to a pre-defined taxonomy of symbol masks would give us the following

sequence of masks:“[A-Z][a-z]+ [A-Z][a-z]+.” for representing the value Regent St.,

“[A-Z][a-z]+ [A-Z][a-z]+.” for Morewood Ave. and “[A-Z][a-z]+ [A-Z][a-z]+. [A-

Z][a-z]+” for Square Ave. Park. With this set of sequence of masks in hand, we

build the markov model that is depicted in Figure 3.4.

To express the likelihood of sequences of masks in the model, we define the weight

of an edge 〈nx, ny〉 as:

w(nx, ny) =
# of pairs 〈nx, ny〉 in mA

# of pairs 〈nx, nz〉,∀nz ∈ mA

(3.4)

The Markov model depicted in the Figure 3.4 shows that the values of the at-

tribute Street always start with a word that has its first letter in uppercase and

the following ones in lowercase. In 75% of the values, this first word is followed by
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another word that finishes with a dot.

Now, let s be a candidate value. We can encode s using the same symbol

taxonomy as above. This results in a sequence of masks. We evaluate how similar a

candidate value s is to the values in vA with respect to their formats by computing

format(s, A) =

∑

〈nx,ny〉∈path(s)
w(nx, ny)

|path(s)| (3.5)

where path(s) represents a path formed by the sequence of masks generated for

s in mA. Notice that, if no path matching for this sequence is found in ma,

format(s, A) = 0.

Intuitively, format(s, A) evaluates how likely are the sequences of symbols form-

ing a given candidate value s with respect to the sequences of symbols typically oc-

curring as values of some attribute A. By using such a feature, we capture specific

formatting properties of URLs, e-mails, telephone numbers, etc. Notice that the

model mA is learned from the set of values vA only. Thus, differently from [9], no

manual training is needed.

3.4 Inducing Structure-related Features

As described in the overview of our approach (Figure 3.1), the content-based features

learned from the knowledge base are used to perform an initial extraction process.

Consequently, the usage of these features over the set of data-rich input text snippets

produces a set of labeled text segments. These labeled text segments can be arranged

into groups that constitute candidate textual records. It is worth noticing that, at

this point, most of the text segments received an attribute label using only content-

based features, but there are some segments that did not receive any label, which

are called unmatched.

Consider a candidate record R = s1, . . . , sr, where each si(1 ≤ i ≤ r) is a
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candidate value. Also, consider an attribute A and let `A be a label used for this

attribute. Then, for any candidate value si, we can compute the value of a feature

function fk(si, A,R). Function fk returns a real number that measures the likelihood

of a segment labeled `A to occur in the same place as si in R. Thus, the value of fk

is related to the structure of R.

Differently from the content-based features used so far, which are only domain-

dependent, structure-based features such as fk depend on the particular organization

of the candidate values within the input text. This means that these features are

source-dependent.

State-of-the-art information extraction methods [19, 22, 48, 73] usually use two

types of structure-based feature. The first type considers the absolute position of

the text segment or token to be evaluated and the second one considers its relative

position, i.e., its occurrence between other segments or tokens in the input text. For

computing such features, it is common to build a graph model that represents the

likelihood of transitions within the input text (or other input texts from the same

source).

In most CRF-based methods, this model is built from training data, which con-

sists of a set of delimited records manually labeled taken from the same input [48].

In [19, 22, 73], the model is built in an unsupervised way during the extraction

process itself. While in [73] a fixed order, learned from a sample, is assumed for

the attributes in the input text, in our approach the model is built using all records

available in the input text and no fixed order is assumed. More specifically, we

build a probabilistic HMM-like graph model called PSM (Positioning and Sequenc-

ing Model).

In our case, a PSM consists of: (1) a set of states L = {begin, `1, `2, . . . , `n,

end} where each state `i corresponds to a label assigned to a candidate value in the

structure-free labeling step, (2) a matrix T that stores the probability of observing

a transition from state `i to state `j, and (3) a matrix P that stores the probability
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of observing a label `i in the set of candidate labels that occupies the k-th position

in a candidate record.

Matrix T , which stores the transition probabilities, is built using the ratio of

the number of transitions made from state `i to state `j in a candidate record to

the total number of transitions made from state `i in all known candidate records.

Thus, each element ti,j in T is defined as:

ti,j =
# of transitions from `i to `j

Total # of transitions out of `i
(3.6)

Matrix P , which stores the position probabilities, is built using the ratio of the

number of times a label `i is observed in position k in a candidate record to the total

number of labels observed in candidate values that occupy position k in all known

candidate records. Thus, each element pi,k in P is defined as:

pi,k =
# of observations of `i in k

Total # of candidate values in k
(3.7)

By using Equations 3.6 and 3.7, matrices T and P are built to maximize the

probabilities of the sequencing and the positioning observed for the attribute val-

ues, according to the labeled text segments in the output of labeled using only the

content-based features. This follows the Maximum Likelihood approach, commonly

used for training graphical models [9, 64].

In practice, building matrices T and P involve performing a single pass over

the output of the usage of the content-based features. Notice that text segments

left unmatched are discarded when building these matrices. Obviously, possible

mismatched text segments will be used to built the PSM, generating spurious tran-

sitions. However, as the number of mismatches is rather small, as demonstrated in

our experiments, they do not compromise the overall correctness of the model.

Figure 3.5 shows an example of the PSM built for a set of data-rich input text

containing classified ads. As we can see, the graph represents not only information
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Figure 3.5: Example of a PSM

on the sequencing of labels assigned to candidate values, but also on the positioning

of candidate values in the input text. For instance, in this example, input texts are

more likely to begin with text segments labeled as Neighborhood than with segments

labeled as Street. Also, there is a high probability that text segments labeled as

Phone occurring after segments labeled as Bedrooms.

Let sk be a candidate value in a candidate record R = . . . , sk, . . . for which a

label `i corresponding to an attribute Ai is to be assigned. Also, suppose that in R

the candidate value next to sk is labeled with `j corresponding to an attribute Aj.

Then, using Equations 3.6 an 3.7, we can compute the two structure-based features

we consider, i.e, the sequencing feature and the positioning feature, respectively as:

seq(sk, Ai, R) = ti,j and pos(sk, Ai, R) = pi,k (3.8)

3.5 Automatically Combining Features

Given a candidate value s, the decision on which attribute label must be assigned

to it takes into account different features. To combine these features, we assume

that they represent the probability of the candidate value s to occur as a value of

the attribute A domain, according to the knowledge base. If we assume that these

features exploit different properties of the attribute A domain, we can say they are
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independent, what allows us to combine them by means of the Bayesian disjunctive

operator or, also known as Noisy-OR-Gate [57].

We have considered several alternatives for such combination, including the use

of machine learning approaches, such as SVM [38] and Genetic Programming [32],

linear combination of values and the use of a Bayesian Network framework. The use

of machine learning is certainly an attractive alternative, but has the disadvantage of

requiring a training, which would hamper the use of our approach in the application

scenarios we consider. The linear combination approach has provided fairly good

results, but the quality of the assignments was a bit worse than the one obtained by

the Bayesian framework.

Another alternative approach for the combination of features would be using

some explicit optimization processes as those used in methods based on HMM and

CRF. In HMM-based methods [9], a Viterbi algorithm is used for finding the most

likely path in a given HMM. Similarly, CRF-based methods [48, 64, 73] find the

weight of each feature using iterative scaling algorithms [45]. These optimization

processes are very time consuming and the results obtained with them are similar

to those we achieved using the Bayesian approach we adopted.

Although not using learning or optimization approaches can, in theory, lead to

sub-optimal results, our experiments demonstrate that our combination approach

works very well in practice. In addition, it has the advantage of speeding up the

extraction process, as we show in the experiments presented in Section 4.5.4 and

Section 5.8.6. Indeed, our hypothesis over the independence of the features gives

to our approach a high level of automation and flexibility. As we shall see, this

hypothesis is confirmed by the experiments we have performed.

In the following we describe in details how to combine content-based features

and then, how to combine content-based and structure-based features.
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3.5.1 Combining Content-Based Features

To combine content-based features, gk, which are evaluated by feature functions of

the form gk(s, A), as stated earlier, we use a Bayesian disjunctive operator or, also

known as Noisy-OR-Gate [57], which is defined as:

or(p1, . . . , pn) = 1− ((1− p1)× . . .× (1− pn))

where each pi is a probability.

Thus, our final equation is:

`(s, A) = 1−
((

1− g1(s, A)
)
× . . .× (1− gn(s, A))

)
(3.9)

Informally, by using the disjunctive operator we assume that any of the features

is likely to determine the labeling (i.e., significantly increase its final probability),

regardless of other factors [57]. Function `(s, A) is computed for each candidate

value s in the input text for all attributes A of the same data type (i.e., text or

numeric). Thus, s is labeled with a label representing the attribute that yielded the

highest score according to this function.

3.5.2 Combining Structure-Based and Content-Based Fea-

tures

Once our approach has induced structure-based features (Section 3.4), we can also

combine them with content features in order to achieve the final extraction result.

In this case, given a candidate value s, the decision on which label to assign to it

can now consider the structure-based features f j in addition to the content-based

features gk. As these features are also independent from the content-based ones,

since they depend on the source, we again resort to the Bayesian Noisy-OR-Gate to

combine all features as follows:
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`(s, R,A) =1− ((1− g1(s, A))× . . .× (1− gn(s, A))×

(1− f 1(s, A,R))× . . .× (1− fm(s, A,R)))
(3.10)

Function `(s, R,A) is computed, for each candidate segment s of all candidate

records R in the input text, for all attributes A of the same data type (i.e., text or

numeric). Thus, s is labeled with a label representing the attribute that yielded the

highest score according to `.

3.6 Unsupervised Extraction Methods

In the following chapters, we present the unsupervised information extraction by

text segmentation methods we have developed based on our proposed approach.

Chapter 4 describes an extraction method method called ONDUX (On Demand

Unsupervised Information Extraction) [20, 22, 59]. ONDUX relies on content-

based features, learned from knowledge bases and structured-based features, directly

learned on-demand from test data, to perform extraction over unstructured textual

records.

Chapter 5 describes an other information extraction method we have developed

called JUDIE (Joint Unsupervised Structure Discovery and Information Extrac-

tion) [19]. Similarly to ONDUX, JUDIE also relies on content-based and structured-

based features to perform the extraction task. But, unlike other existing extraction

methods, JUDIE is capable of detecting the structure of each individual record being

extracted without any user assistance. This feature unique of JUDIE is accomplished

by a novel Structure Discovery algorithm we have developed.

Our proposed approach was also exploited by iForm [69, 70], a method that

is able to deal with the Web form filling problem. iForm is a part of a master

thesis presented in [71]. As part of the work here presented we have developed

the extraction engine that supports this method. Chapter 6 presents an overview
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of this method and show how it exploits values that were previously submitted to

Web forms to learn content-based features, which are then used to extract values

from unstructured text. As in the form filling setting the usage of structure-based

features is not possible, iForm relies only on content-based features.

All of these methods were developed, implemented and evaluated considering

different experimental datasets. All the experiments we have performed to validate

them are described in the the following chapters.
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Chapter 4

ONDUX

In this chapter we present ONDUX (On Demand Unsupervised Information Extrac-

tion) a method that relies on our proposed approach to deal with the Information

Extraction by Text Segmentation problem. ONDUX was first presented in [22] and

in [20]. Following, a tool based on ONDUX was presented in [59].

As other unsupervised IETS approaches, ONDUX relies on information available

on pre-existing data, but, unlike previously proposed methods, it also relies on a very

effective set of content-based features to bootstrap the learning of structure-based

features. More specifically, structure-based features are exploited to disambiguate

the extraction of certain attributes through a reinforcement step. The reinforcement

step relies on sequencing and positioning of attribute values directly learned on-

demand from test data.

In the following, we present an overview of ONDUX and describe the main steps

involved in its functioning. Next, each step is discussed in turn with details. We

also report an experimental evaluation of ONDUX presenting its performance in

different datasets and domains. Finally, we describe a tool that implements the

ONDUX method.

37
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4.1 Overview

Consider an input string I representing a real classified ad such as the one presented

in Figure 4.1(a). As stated in Chapter 1, the IETS problem consists in segmenting I

in a way such that each segment s receives a label ` corresponding to an attribute a`,

where s represents a value in the domain of a`. This is illustrated in Figure 4.1(d),

which is an example of the outcome produced by ONDUX.

Figure 4.1: Example of an extraction process on a classified ad using ONDUX.

Similar to previous approaches [1, 73], in ONDUX we use attribute values that

come from pre-existing data sources from each domain (e.g. addresses, bibliographic

data, etc.) to label segments in the input text. These values are used to form

domain-specific Knowledge Bases, according to the definition in Section 3.2.

The ONDUX first step is called Blocking. In this step, the input string is roughly

segmented into units we call blocks. Blocks are simply sequences of terms (words)

that are likely to form a value of an attribute. Thus, although terms in a block must

all belong to a same value, a single attribute value may have terms split among two

or more blocks. This concept is illustrated in Figure 4.1(b). Observe that the blocks

containing the terms “Mifflin” and “Ave” are parts of the same value of attribute

Street.

Next, in the Matching step, blocks are associated to attribute labels using the

content-based features (Section 3.3) that were learned from a knowledge base. By

the end of the Matching step, each block is pre-labeled with the name of the attribute
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for which the best match was found.

We notice that the Blocking and Matching steps alone are enough to correctly

label the large majority of the segments in the input string. Indeed, experiments

with different domains, which we have performed and reported here, have shown that

blocks are correctly pre-labeled in more than 70% of the cases. This is illustrated in

Figure 4.1(c) in which the Matching was able to successfully label all blocks except

for the ones containing the terms “Regent Square” and “Mifflin”.

Problems such as this are likely to occur in two cases. The first, Mismatching,

happens when two distinct attributes have domains with a large intersection. For

instance, when extracting from scientific paper headings, values from attributes

Title and Keywords have usually several terms (words) in common. In our running

example, as shown in Figure 4.1(c), “Regent Square” was mistakenly labeled with

Street instead of Neighborhood. The second, Unmatching, happens when the content-

based features we use are not able to determine any label to a given block, as the

case of the block containing the term “Mifflin” in Figure 4.1(c).

To deal with such problems, our method includes a third step we call Reinforce-

ment in which the the outcome of the Matching step is explored to automatically

induce structure-based features (Section 3.4) and, the Matching step is reinforced

by taking into consideration the positioning and the sequencing of labeled blocks in

the input texts. In the following we present the details of each step described above.

4.2 Blocking Step

The first step of ONDUX consists of splitting an input string into substrings we call

blocks. In our proposed method, we consider blocks as sequences of terms that will

compose a single value of a certain attribute. In Figure 4.1(b) the blocks identified

in our input string example are inside rectangles.

The blocking process is based on the co-occurrence of terms in a same attribute
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value according to the knowledge base. This process is described in Algorithm 1.

Let I be an input string. Initially, terms are extracted from I based on the

occurrence of white spaces in the string, being special symbols and punctuation

simply discarded (Line 1).

Next (Lines 7–15), blocks are built as follows: if the current term (say, tj−1) and

next term (say, tj) are known to co-occur in some occurrence in the knowledge base,

then tj will compose the same block as tj−1. Otherwise, a new block will be built

for tj. This process is repeated until all terms of I are assigned to a block. Notice

that terms that do not occur in the knowledge base always form a block alone.

Algorithm 1 Blocking
1: I : Input Text
2: K = {〈a1, O1〉, . . . , 〈an, On〉} : knowledge base
3: T : 〈t0, . . . , tn〉 ← ExtractTerms(I)
4: B0 ← . . .← Bn ← ∅ {Initialize blocks}
5: B0 ← B0 ∪ 〈t0〉; {Builds the first block}
6: i = 0, j = 1;
7: repeat
8: C ← {〈ak, Ok〉 ∈ K, ox ∈ Ok | tj−1, tj ∈ ox}
9: if C = ∅ then

10: {tj−1 and tj do not co-occur}
11: i← i+ 1; {Next block}
12: end if
13: Bi ← Bi ∪ 〈tj〉; {Adds tj to the current block}
14: j + +; {Next term}
15: until j = n

According to the knowledge base presented in Figure 3.2 (Section 3.2), terms

“Regent” and “Square” co-occur as values of the attribute Neighborhood. Thus, as

shown in Figure 4.1(b), these terms are in the same block, i.e, the first block in the

figure.

4.3 Matching Step

The Matching step consists in associating each block generated in the Blocking step

with an attribute represented in the knowledge base. For this, we use the content-
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based features described in Section 3.3. These features are used to determinate

the attribute that the block is more likely to belong to. The specific content-based

feature that will be used to match a block is chosen by a simple test over the terms

composing this block to define a data type. We consider four distinct types of data

with a corresponding content-based feature: text, numeric, urls, and email.

For the matching of textual values, ONDUX relies on the Attribute Vocabulary

feature described in Section 3.3.1. This feature exploits the common vocabulary

often shared by values of textual attributes (e.g., neighborhood and street names,

author names, recipe ingredients, etc.). For the matching of numeric values ON-

DUX relies on the Attribute Value Range feature described in Section 3.3.2. The

Attribute Value Range feature specifically deals with numeric attributes using the

average and the standard deviation of the values of numeric attributes available on

the knowledge base. For matching URLs and e-mails values ONDUX applies simple

binary functions using regular expressions, which identify each specific format and

return true or false.

Despite its simplicity, the use of content-based features we adopt to label blocks

is by itself a very effective way of labeling segments in the input text. Indeed,

experiments with different domains, which we have performed and reported here,

show that blocks are correctly pre-labeled in more than 70% of the cases.

In Figure 4.1(c) we show the result obtained after the matching step for our

running example. As can be noticed, almost all blocks were assigned to a proper

attribute, except for the following cases: (1) the block containing “Mifflin” was left

unmatched and (2) the block containing “Regent Square” was mistakenly assigned

to Street, instead of being assigned to Neighborhood. To deal with both cases, our

method includes a third step, Reinforcement, which is discussed in the following

section.
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4.4 Reinforcement Step

The Reinforcement step consists in revising the pre-labeling made by the Matching

step over the blocks. More specifically, unmatched blocks are labeled and mis-

matched blocks are expected to be correctly re-labeled. We notice that in our

context, the term Reinforcement is used in a sense slightly different from the tra-

ditional Reinforcement Learning technique [39]. Indeed, in our case this step not

only reinforces the labeling performed by the Matching step, but also revises and

and possibly corrects it.

As the pre-labeling of blocks performed in the Matching step has a high accuracy

(as demonstrated by our experiments), this pre-labeling can be used to automatically

induce structure-based features (Section 3.4), which are related to the sequencing

and positioning of attribute values in input texts. Notice again that these features

are learned on-demand from each set of input text with no need for human training

nor assumptions regarding a particular order of attribute values.

For computing such structure-based features, it is common to use a graph model

that represents the likelihood of attribute transitions within the input text (or any

other input text from the same source). We use a probabilistic HMM-like graph

model that we call PSM (Positioning and Sequencing Model). The process of auto-

matically inducing structure-based features and building the PSM model is explained

in details in Section 3.4. After generating the PSM, the estimated probabilities are

used to perform label reinforcement, as discussed in the following section.

On the Matching step, the labeling of a block was made based entirely on the

content-based features as described in Section 4.3. However, after building the

PSM, the decision on what label to assign to a block can also take into account the

structure-based features of the text inputs.

To combine the content-based features and the structure-based features, ON-

DUX relies on a combination strategy described in Section 3.5. Notice that there

will be no unmatched blocks after this process. Once all blocks are labeled, contigu-
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ous blocks with a same label are merged. Thus, each block would correspond to a

single attribute value. This is illustrated in our running example in Figure 4.1(d),

in which all blocks are correctly assigned to the attributes. The first block, which

was wrongly labeled in the Matching phase, has been now correctly assigned to the

Neighborhood attribute. Also, the unmatched block containing the term “Miffin”

now composes a value of attribute Street.

4.5 Experimental Evaluation

In this section, we evaluate ONDUX using a variety of real datasets to show that this

is a robust, accurate, and efficient unsupervised method for IETS. We first describe

the experimental setup, including experimental data and the metrics used. Then,

we report results on extraction quality and performance over all distinct datasets.

4.5.1 Setup

In the experiments, we compare ONDUX with an unsupervised version of CRF.

This version was developed by adapting the publicly available implementation of

CRF by Sunita Sarawagi 1, according to what is described in [73]. We call this

version U-CRF. We believe that U-CRF represents the most suitable baseline for

comparing with ONDUX, as it delivers top performance while at the same time

does not require user-provided training. Although the Extended Semi-markov CRF

presented in [48] could have been used as baseline, since it relies mostly on features

learned from a pre-existing dataset, it also uses a small portion of manually trained

data. Moreover, [73] improves on [48] results. However, since our first baseline

assumes, as we shall see in more details later, that the order of the text sequences to

be extracted is fixed, we also included the standard CRF model [45] (called S-CRF),

that does not have this limitation at all but requires manually labeled training data.

1http://crf.sourceforge.net/
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Obviously, S-CRF is only used as a baseline for cases in which we have the training

data. Using the two baselines, also allows us to compare the strengths of each of

these models against our approach.

As for the configuration of U-CRF and S-CRF, we deployed the same features

described in [73] and in [45]. Overall, these are standard features available on

the publicly CRF implementation, e.g., dictionary features, word score functions,

transition features, etc., plus, in the case of U-CRF the set of heuristic rules for using

negative examples proposed in [73]. Although the basic CRF model is flexible enough

to allow features to be tailored for specific extractions tasks, in all experiments

we have used the same configuration for U-CRF and S-CRF. This is to ensure a

fair comparison since we assume that no specific adjustments were necessary for

ONDUX to be used in the experiments.

As required by U-CRF, a batch of the input strings is used to infer the order

of the attribute values. Based on the information provided in [73], this batch is

composed of 10% of the input strings in all cases.

4.5.1.1 Experimental Data

The data sources used to generated the knowledge bases for ONDUX, the references

tables for U-CRF and the training data for S-CRF as well as the test datasets used

in the experiments are summarized in Table 4.1.

Domain Source Attribute Record Dataset Attribute Inputs

Addresses BigBook 5 2000
BigBook 5 500

to
2000

Restaurants 4 250

Bibliographic
Data

CORA 13 350
CORA 13 150

PersonalBib 7 395

Classified
Ads

Folha On-line 5 to 18 125 Web Ads 5 to 18 500

Table 4.1: Domains, data sources and test datasets used in the experiments.

We tried to use the same datasets and data sources explored by our baselines,
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when these were publicly available. In the case of restricted data sources or datasets,

we tried to obtain similar public versions on the same domains.

Indeed, in most cases the data sources and the test datasets we have used came

from public available sources used for the empirical analysis of information extraction

methods. This is the case of Bigbook and Restaurants, from the RISE repository [55],

the CORA collection [50] and the PersonalBib dataset [48]. It is important to notice

that in the case of BigBook and CORA, the knowledge bases and the reference

tables were built from sets of records already extracted by third-parties and those

are completely disjoint (i.e., have no common entries) from the strings in the test

datasets used in the experiments.

Data on the Classified Ads domain were obtained directly from the Web. For

building the knowledge base, we collected data from an on-line database available

from Folha On-line, a popular Brazilian newspaper site. The test dataset Web Ads

is formed by unstructured strings containing ads from other five Brazilian news-

paper sites. Each website bares a distinct classified ads format, e.g., in terms of

attribute values order and positioning. Moreover, the number of distinct attribute

occurrences in each instance vary from 5 to 18. These properties result in a high

level of heterogeneity in the test instances.

4.5.1.2 Metrics for Evaluation

In the experiments we evaluated the extraction results obtained after the Matching

and Reinforcement steps discussed in Section 4.1. We aimed at verifying how each

step contributes to the overall effectiveness of ONDUX. In the evaluation we used

the well known precision, recall, and F-measure metrics, but all tables report only

F-measure values.

Let Bi be a reference set and Si be a test set to be compared with Bi. We define

precision (Pi), recall (Ri) and F-measure (Fi) as:



46 CHAPTER 4. ONDUX

Pi =
|Bi ∩ Si|
|Si|

Ri =
|Bi ∩ Si|
|Bi|

Fi =
2(Ri.Pi)

(Ri + Pi)
(4.1)

For all reported comparisons with U-CRF, we used the Student’s T-test [3] for

determining if the difference in performance was statistically significant. In all cases,

we only drew conclusions from results that were significant in, at least, 5% level for

both tests. Non-significant values are omitted.

Also, we run each experiment five times, each time selecting different samples for

building the knowledge base and for testing. For all the experiments we performed,

we report the average of the results obtained in each of the five runs.

4.5.2 Extraction Evaluation

4.5.2.1 Blocking Results

The first result we report aims at verifying in practice the strategy we have formu-

lated for the Blocking step, that is, our blocking strategy only generates blocks in

which all terms belong to a unique attribute. Thus, we measure how homogeneous

each generated block is.

Dataset Source % Same % Unknown
BigBook BigBook 94.13% 5.34%

Restaurants BigBook 92.17% 7.42%
CORA CORA 80.91% 18.88%
CORA PersonalBib 78.00% 19.47%

WebAds Folha On-Line 87.13% 12.32%

Table 4.2: Results of Experiments on the Blocking Step.

Table 4.2, column “% Same” shows that in all test datasets a large percentage

of blocks contain terms found in the values of the same attribute according to the

knowledge base. Column “% Unknown” shows the percentage of blocks with terms

not represented in the knowledge base. As pointed out in Section 4.2, such blocks

always contain a single term. We notice that in all cases the percentage of heteroge-

neous blocks, that is, those that are not homogeneous nor unknown is rather small,
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less than 3%. Thus, we conclude that our blocking strategy behaves as expected.

It is worth mentioning that the high percentage of unknown blocks in the CORA

dataset is caused by the diversity of terms that is normally found in the scientific

paper metadata, specially in the Title attribute. As we shall see latter, despite this,

ONDUX shows an excellent performance on this dataset.

4.5.2.2 Attribute-Level Results

To demonstrate the effectiveness of our method in the whole extraction process, we

evaluate its extraction quality by analyzing, for each attribute, if the (complete)

values assigned by our method to this attribute are correct. In what follows we

show our results for the three domains considered: Addresses, Bibliographic Data

and Classified Ads.

Addresses Data Domain

Table 4.3 shows the results for the attribute level extraction over the BigBook dataset

using the BigBook data source. Recall that, although the same collection has been

used, the dataset and the data source are disjoint. This is the same experiment

reported in [73], and we include it here for completeness and to validate our baseline

implementation. The BigBook dataset follows the assumption made by [73], ac-

cording to which “a batch of text sequences to be segmented shares the same total

attribute order”. We call this single total attribute order assumption.

ONDUX
Attribute S-CRF U-CRF Matching Reinforcement
Name 0.997 0.995 0.928 0.996
Street 0.995 0.993 0.893 0.995
City 0.986 0.990 0.924 0.995
State 0.999 0.999 0.944 1.000
Phone 0.992 0.988 0.996 1.000
Average 0.994 0.993 0.937 0.997

Table 4.3: Extraction over the BigBook dataset using data from the BigBook source.
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In Table 4.3, values in boldface indicate a statistically superior result with at least

95% confidence. Starting by the comparison between the unsupervised methods, we

can see that the results of both U-CRF and ONDUX after the reinforcement are

extremely high for all attributes (higher than 0.988 for all attributes). However,

the results of our method are statistically superior than those of U-CRF in at least

two attributes (i.e., City and Phone and are statistically tied in the other three

attributes. Another important aspect is the importance of the reinforcement step

which produced gains of more than 5% over already very strong results. A closer look

at this gain, reveals that it is mostly due to recall, which improved more that 9%,

while the precision improved only 2%, on average. This is in accordance with our

hypothesis regarding the high precision of the Matching step. The Reinforcement

step plays the role of “filing the gaps”, and therefore, improving recall. Notice that

the U-CRF results are very similar to those reported in [73], thus further validating

our baseline implementation.

Since in this case we have manually labeled data in the BigBook dataset, we

were also able to compare the unsupervised methods with S-CRF. In this case, the

results of both CRF-based methods are very close, and the conclusions are similar

to the ones described before. This also shows that the supervised method, in this

particular dataset, could not take much advantage of the training data besides what

U-CRF was able to learn from the reference tables.

This experiment was repeated using the Restaurants dataset as the test dataset.

Our motivation is to show that IETS approaches based on previously known data

such as ONDUX and U-CRF are capable of learning and using source independent

features from these data. In this case, as well as in the others in which the source

is different from the test dataset, the comparison with the S-CRF does not make

sense, since, for this method to work, the learning data has to present a similar

distribution as the test data. The Restaurants dataset has the same attributes as

the BigBook one, except for the State attribute. The single total attribute order
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assumption also applies here. The results are reported in Table 4.4.

ONDUX
Attribute U-CRF Matching Reinforcement
Name 0.942 0.892 0.975
Street 0.967 0.911 0.982
City 0.984 0.956 0.987
Phone 0.972 0.982 0.992
Average 0.966 0.935 0.984

Table 4.4: Extraction over the Restaurants dataset using data from the BigBook
source.

Again, both U-CRF and ONDUX achieved good results for all attributes, higher

than 0.942 for all attributes. ONDUX had a statistically significant advantage on

attributes Name and Phone, while statistical ties were observed for attributes Street

and City.

Bibliographic Data Domain

The next set of experiments was performed using the CORA test dataset. This

dataset includes bibliographic citations in a variety of styles, including citations for

journal papers, conference papers, books, technical reports, etc. Thus, it does not

follow the single total attribute order assumption made by [73]. The availability of

manually labeled data allowed us to include the S-CRF method in this comparison.

A similar experiment is reported in [58]. Because of this, we have to generate our

knowledge base and the reference tables for U-CRF using the same data available

on the unstructured labeled records we used to train the standard CRF, also from

the CORA collection. As always, this training data is disjoint from the test dataset.

The results for this experiment are presented in Table 4.5.

First, notice that the good results obtained with the supervised CRF (S-CRF )

are similar to those reported in the original experiment [58]. In the case of ONDUX,

altought it is an unsupervised method, even superior results were achieved. Statis-

tically superior results were obtained for 6 out of 13 attributes (results in boldface)
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ONDUX
Attribute S-CRF U-CRF Matching Reinforcement

Author 0.936 0.906 0.911 0.960
Booktitle 0.915 0.768 0.900 0.922
Date 0.900 0.626 0.934 0.935
Editor 0.870 0.171 0.779 0.899
Institution 0.933 0.350 0.821 0.884
Journal 0.906 0.709 0.918 0.939
Location 0.887 0.333 0.902 0.915
Note 0.832 0.541 0.908 0.921
Pages 0.985 0.822 0.934 0.949
Publisher 0.785 0.398 0.892 0.913
Tech 0.832 0.166 0.753 0.827
Title 0.962 0.775 0.900 0.914
Volume 0.972 0.706 0.983 0.993
Average 0.901 0.559 0.887 0.921

Table 4.5: Extraction over the CORA dataset using data from the CORA source.

and statistical ties were observed for other 4 attributes. The results with U-CRF

were rather low, what is explained by the heterogeneity of the citations in the col-

lections. While the manual training performed for S-CRF was able to capture this

heterogeneity, U-CRF assumed a fixed attribute order. On the other hand, ON-

DUX was able to capture this heterogeneity through the PSM model, without any

manual training.

Still on the Bibliographic data domain, we repeated the extraction task over the

CORA test dataset, but this time, the previously known data came from the Per-

sonalBib dataset. This dataset was used in a similar experiment reported in [48].

Again, our aim was demonstrate the source independent nature of unsupervised

IETS methods. Notice that not all attributes from CORA were present in Person-

alBib entries. Thus, we only extracted attributes available on both of them. The

results for this experiment are presented in Table 4.6. Notice that in this case we

could not perform manual training , since the previously known data came directly

from a structured source. Thus, we do not report results for S-CRF here.

The results for ONDUX and U-CRF are quite similar to those obtained in the
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ONDUX
Attribute U-CRF Matching Reinforcement
Author 0.876 0.733 0.922
Booktitle 0.560 0.850 0.892
Date 0.488 0.775 0.895
Journal 0.553 0.898 0.908
Pages 0.503 0.754 0.849
Title 0.694 0.682 0.792
Volume 0.430 0.914 0.958
Average 0.587 0.801 0.888

Table 4.6: Extraction over the CORA dataset using data from the PersonalBib
source.

previous experiments, with a large advantage for ONDUX, for the reasons we have

already discussed.

Classified Ads Domain

Finally, Table 4.7 presents the results for the experiments with the test dataset Web

Ads. The knowledge base and the reference tables were built using structured data

from the Folha On-Line collection. In this table, the attribute Others corresponds

to an amalgamation of a series of attributes present only in few ads such as Neigh-

borhood, Backyard, Garden, etc. For this dataset, ONDUX outperforms U-CRF in

about 5% even before the Reinforcement step. After this step, our method signifi-

cantly outperforms the baseline in all attributes with an overall gain of more than

10% in average. Recall that this is a very heterogeneous dataset bearing several

distinct formats. Our good results in this dataset highlights the robustness and the

flexibility of our solution, even when compared to our closest competitor.

4.5.3 Dependency on Previously Known Data

An important question to address is to determine how dependent the quality of

results provided by the unsupervised IETS methods studied is from the overlap

between the previously known data and the text input. To study such dependency,
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ONDUX
Attribute U-CRF Matching Reinforcement
Bedroom 0.791 0.738 0.861
Living 0.724 0.852 0.905
Phone 0.754 0.884 0.926
Price 0.786 0.907 0.936
Kitchen 0.788 0.776 0.849
Bathroom 0.810 0.760 0.792
Suite 0.900 0.853 0.881
Pantry 0.687 0.741 0.796
Garage 0.714 0.784 0.816
Pool 0.683 0.711 0.780
Others 0.719 0.777 0.796
Average 0.760 0.798 0.849

Table 4.7: Extraction over the Web Ads dataset using data from the Folha On-Line
source.

we performed experiments to compare the behavior of ONDUX and U-CRF when

varying the amount of terms given in the knowledge base or reference tables that

overlap with the terms found in the input text. Recall that the entries in which

these terms occur are used to form attribute occurrences in the knowledge base for

ONDUX, and the reference tables for training U-CRF.

The experiments were performed using the BigBook dataset, which contains

about 4000 entries. As mentioned earlier, this dataset came from the RISE reposi-

tory [55]. Thus, the knowledge base and the reference tables were build from sets of

records already extracted, which are disjoint from the strings on the test datasets

used from the same collections.

In the experiments, we vary the number of known terms that are shared between

the previously known data and the input test sequence. We have also varied the

number of input strings in the test sequence to check whether the amount of overlap

necessary to obtain good results increase as the number of text inputs found in the

test sequence also increases.

Figure 4.2 shows the results for four different sizes of test set, varying the number

of text inputs present in the test set from 500 to 2000. The number of shared terms
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Figure 4.2: F-Measure values obtained when varying the number of shared terms
for four different sizes of datasets built from BigBook.

between the knowledge base and the test input sequence varies in all cases from 50

to 1000 terms, and the extraction quality is evaluated by means of F-measure.

An important information obtained from these four graphs is that the quality

of results provided by the methods does not vary with the size of the test input

for fixed amounts of shared terms. For instance, with an overlap of 250 terms,

ONDUX achieved 0.73 of F-measure for the test dataset of size 500 and 0.74 for

the test dataset of size 1500. When taking an overlap of 100 terms, values are 0.66,

0.67. 0.68 and 0.64 for the test sizes 500, 1000, 1500 and 2000, respectively. These

results indicate that, at least for this dataset domain, both ONDUX and U-CRF

could keep good performance with a small amount of previously known data even

for larger test sets. This behavior was expected, since both methods use the overlap

to obtain statistics about the structure of the test input sequence. Once the number
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of term overlaps is large enough to allow the methods to compute such statistics,

both methods are able to learn how to extract data from the test input sequence,

no matter what is its size.

We can also see from the graphs that the total number of shared terms necessary

to achieve good performance is also not prohibitive, since both methods were able to

achieve high quality performance (more than 95% in case of ONDUX ) when taking

only 750 terms of overlap for all the four sizes of test set studied. When looking to

the smaller test sets, this overlap seems to be high when compared to the size of

the test, but it does not need to increase as the test set increases. The number of

records from the BigBook source required to obtain such overlap in the knowledge

base was 162 in the results presented in Figure 4.2(d), about 8% of the size of the test

set (recall that these are disjoint sets). This overlap also represents about 14% of

vocabulary overlap between the knowledge base and the test set. These percentages

are obviously higher for the smaller tests, since we still need 750 term overlaps to

achieve about the same performance, but would tend to zero for larger test sets.

A good question at this point is to know how practical is to have hundred of terms

in common between a reference set and a real data source for a system to extract

information. To give a better idea about practical scenarios, let us consider all the

combinations of data sources and datasets we tested in our experiments, where most

collections were taken from previous experiments presented in literature.

The term overlap results found in the experiments with these combinations are

depicted in Table 4.8. As it can be seem, except for the combination of PersonalBib

as data source and CORA as dataset, in all the experiments performed the number

of shared terms is higher than the amounts of shared terms found in Figure 4.2,

which allowed both ONDUX and U-CRF to achieve high level quality of results in

the experiments. For instance, when using BigBook as data source and Restaurants

as the test dataset, the number of shared terms is 2504. Of course, the overlap is not

the unique factor to determine the performance of the methods and the amount of
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overlap required may vary according to other factors presented in our experiments.

However, still the amount of overlap required by the two experimented methods is

not a prohibitive aspect for their practical application.

Source Dataset # of shared terms

BigBook BigBook 3667

BigBook LA Restaurants 2504

PersonalBib CORA 549

CORA CORA 1089

Folha On-line Web Ads 1184

Table 4.8: Term overlap in the experiments performed with all combinations of data
sources and test datasets adopted in the experiments.

4.5.4 Performance Issues

We move now to discuss performance issues related to ONDUX. This is an interesting

aspect to analyze since ONDUX works on-demand, in the sense that positioning

and sequencing information is learned from test instances, with no a priori training.

Although this feature gives our method a high level of flexibility, it is important to

measure its impact on the performance of the whole extraction process carried out

by ONDUX.

Also in this aspect, we compare ONDUX with our baseline U-CRF. For this, we

take into account training and test times. This is justified by the fact that every

new extraction process carried out by U-CRF requires a new model to be learned

from test instances.

The time figures we report here were collected for each one of the quality experi-

ments presented earlier. For each specific task we measured the time in seconds spent

by each unsupervised extraction method. These results are presented in Table 4.9.

In spite of the on-demand process performed by ONDUX, the time spent on pro-

cessing test instances is shorter than the time spent by U-CRF. In all experiments,

we notice that ONDUX was faster than U-CRF, i.e., it needed less than 27 seconds

to execute the whole process in all extraction tasks, while U-CRF needed at least
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194 seconds.

To explain that, we notice that in ONDUX the Matching step potentially de-

mands the largest amount of time. However, the content-based features used by our

method are implemented using efficient inverted lists, often used in IR systems. All

other steps are linear on the number of terms in the input strings. On the other

hand, the extraction process performed by U-CRF is slower since the generation of

the model for each new extraction task requires verifying several state and transition

features for each attribute prior to the proper extraction step.

Source Dataset U-CRF ONDUX

BigBook BigBook 316 23

BigBook LA Restaurants 604 27

PersonalBib CORA 317 21

CORA CORA 194 17

Folha On-line Web Ads 2746 19

Table 4.9: Time in seconds spent in each extraction task.

4.5.5 Comparison with Previous Methods

ONDUX falls in the category of methods that apply learning techniques to extract

information from data rich input strings. As such, it has several points in common

with previous methods that have been successfully applied to such a task, such

as HMM [9] and CRF [45]. However, it also has unique characteristics that are

worth discussing. As CRF is the current state-of-the-art method for this problem,

we here compare our method to it. More specifically, we compare ONDUX with

CRF-based methods in the literature that, like ONDUX, rely on previously known

data to generate the extraction model. These are the methods presented in [48]

and [73], which we refer to as Extended Semi-CRF (ES-CRF) and Unsupervised

CRF (U-CRF, as in the previous section), respectively.

The first distinction between ONDUX and the other two methods is the match-

ing step. This step relies on set of content-based features and does not need to be

trained for a specific target source, since it relies only on the known data available
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on the knowledge base. The main difference between ONDUX and the two similar

methods, ES-CRF and U-CRF, is the way structure-based features, related to posi-

tioning and sequencing of attributed values (transition features [64]) are learned. In

ONDUX these features are captured by the PSM model, which, as demonstrated in

our experiments, is flexible enough to assimilate and represent variations in the order

of the attributes in the input texts and can be learned without user-provided train-

ing. U-CRF is also capable of automatically learning the order of the attributes,

but it cannot handle distinct orderings on the input, since it assumes a single total

order for the input texts. This makes the application of this method difficult to a

range of practical situations.

For instance, in bibliographic data, it is common to have more than one order in

a single dataset. Further, the order may vary when taking information from distinct

text input sequences, according to the bibliographic style adopted in each input.

The order is even more critical in classified ads, where each announcer adopts its

own way of describing the object he/she is trying to sell. Another quite common

application is to extract data from online shopping sites to store them in a database.

The attributes of the offer, such as price, product, discount and so on, usually appear

in a fixed order. In practical applications like these, ONDUX is the best alternative

method. Further, it is as good as the baselines for any other practical application.

In ES-CRF, distinct orderings are handled, but user-provided training is needed

to learn the transition features, similarly to what happens with the standard CRF

model, thus increasing the user dependency and the cost to apply the method in

several practical situations.

4.6 The ONDUX Tool

In order to demonstrate the features of the ONDUX method, we have created a

tool that is called ONDUX Tool [59]. This tool implements all functionalities of
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the method and it is able to produce all the experimental results reported in Sec-

tion 4.5. Next we describe this tool, discuss its technical details, and illustrate its

main features by means of a case study.

4.6.1 Tool Architecture

Figure 4.3: The architecture of the ONDUX Tool.

Figure 4.3 illustrates the architecture of the ONDUX Tool. It consists of three

main components: Data Input, ONDUX Engine and Extraction Output, which are

detailed in the following.

The Data Input component is responsible for reading and processing two required

input files: (1) a structured file containing the occurrences that compose a knowledge

base and (2) a text file containing the unstructured records to be extracted.

The knowledge base file must follow a simple XML-based format, which is illus-

trated in Figure 4.4. In this figure, each line represents an occurrence that composes

the knowledge base. The XML tags correspond to attribute names and the values

between the tags correspond to attribute values. In this example, the knowledge

base contains occurrences of the attributes Name, Street, City and Phone.

Besides the tasks of reading and processing the input files, the Data Input com-

ponent builds data structures necessary to the execution of the ONDUX method.

In particular, as depicted in Figure 4.3, an inverted index is built for processing the

knowledge base.

The inverted index stores important information about the occurrences of each

attribute. It contains a vocabulary structure that holds the distinct terms avail-

able in the knowledge base. Each entry of this vocabulary contains an occurrence
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<kb>

<name> 21st & Century Pools </name>

<name> Microsoft S.A. </name>

<street> 630 S Country Rd </street>

<street> Kennedy Avenue </street>

<city> New York </city>

<city> Orlando </city>

<phone> (516) 447-5242</phone>

<phone> (55) 92 331-7917</phone>

</kb>

Figure 4.4: Example of a knowledge base file.

list that stores information about the frequency of each term in a given attribute.

This structure is crucial for computing the content-based features used by the ON-

DUX method (See Section 3.3).

The ONDUX Engine component implements the 3 main steps of the ONDUX method:

the Blocking step, the Matching step and the Reinforcement step. The extraction

process follows the execution sequence illustrated in Figure 4.3, thus, a given step

can be executed only when the previous step is over.

Finally, the Extraction Output component is responsible for presenting the ex-

traction result to the user by exporting it into several formats. This component

takes the output of the ONDUX Engine component and creates views of the ex-

traction result. As Figure 4.3 illustrates, the extraction results can be exported into

different formats: tables, XML and CSV.

4.6.2 Graphical User Interface

In our Tool, the operation of the graphical user interface (GUI) is very intuitive and

simple. Figure 4.5 presents a screenshot of the GUI. It includes boxes for loading a

file containing the knowledge base and the input file containing unstructured records.

The GUI also features buttons for executing each step of the ONDUX method,

that is, Blocking, Matching and Reinforcement. Partial results from the extraction

process are presented on the screen to the user through tabs.
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Figure 4.5: A Screen shot of the ONDUX Tool.

The Blocking tab presents the blocks resulting from the blocking step. The

Matching tab presents the blocks generated in the previous step associated to labels

corresponding to attributes, or identified as unmatched. Finally, the Reinforcement

tab shows the final extraction result. As illustrated in Figure 4.5, in this last step,

all blocks are associated to an attribute.

An additional tab, PSM, graphically illustrates the positioning and sequencing

model (PSM) built for the current extraction process. The last tab, Result, presents

the extraction result in a tabular format. Finally, the XML and CSV buttons allow

the user to export the extraction result in these formats.

4.6.3 Case Study

In this section we present a case study in which we use the ONDUX Tool to perform

an extraction process over the CORA dataset. As stated in Section 4.5.1, CORA

is a public dataset that contains unstructured bibliographic references. These refer-

ences contain several attributes values like: author names, publication titles, page

numbers, etc.

Figures 4.6 (a) and (b) present screen shots of the GUI when executing this

extraction process. Figure 4.6 (a) shows the result of the Matching step, where
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(a)

(b)

Figure 4.6: Matching (a) and Reinforcement (b) steps in the ONDUX Tool.

almost all blocks were associated to an attribute. The figure also shows cases of

blocks that were wrongly labeled and blocks that received the label “un”, meaning

that these blocks were left unmatched.

The result of the Reinforcement step is depicted in Figure 4.6 (b). Now, all

blocks are associated to an attribute (i.e., there is no unmatched blocks), and, as

illustrated, blocks that were wrongly labeled in the Matching step are now correctly

labeled.

Figure 4.7: Graphical illustration of the Positioning and Sequencing Model (PSM).

As explained in Section 4.4, the Reinforcement step relies on the Positioning
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and Sequencing Model (PSM). Figure 4.7 shows a graphical visualization of the

PSM generated by the tool for this extraction task. As already mentioned, this

visualization is available on the PSM tab in the tool. In the graph shown, each

vertex represents an attribute and the edges represent transition probabilities.



Chapter 5

JUDIE

In this chapter we present JUDIE (Joint Unsupervised Structure Discovery and

Information Extraction) a method for addressing the IETS problem. JUDIE was

presented in [19].

We first introduce the scenario to which JUDIE is targeted to, then we go

over our proposed solution detailing all the steps that comprise JUDIE. Finally,

we present an experimental evaluation of JUDIE, comparing its result with different

baselines available in the literature.

5.1 The JUDIE Method

An important limitation in all previous IETS methods proposed in the literature is

that they rely on the user to implicitly provide the likely structures of the records

found on textual sources. This is true even for the most recent methods that apply

some form of unsupervised learning [1, 22, 48, 73]. In most cases, the information on

the likely structures is provided in the training phase, by means of sample records

labeled by a user [48]. The generated model is then able to extract information

from one record at a time, what requires the user to separate each individual record

prior to providing them as input for the extraction process. In other cases [22,

73], although the structure-based features can be automatically learned from the

63
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unlabeled input records, i.e., no explicit training is required, these records must still

be provided one by one.

This requirement implies into several shortcomings for situations in which many

implicit records are available in a single textual document (e.g., a list of references

in a research article, or products in an inventory list) or a user is not available for

separating the records (e.g., an extractor coupled with a crawler or when processing

a stream of documents). Although straightforward methods could be applied to

simple cases in which the set of attributes is fixed for all records, dealing with

semi-structured records such as heterogeneous bibliographic citations, classified ads,

etc., is much more complex. In the case of HTML pages, sometimes it is possible

to automatically identify record boundaries and, thus, separate records by using

heuristics based on the tags and paths inside the page [10, 28]. However, this is

not the most common scenario on the Web and other on-line sources of textual

documents, such as social networks or RSS messages.

As an example, consider the Chocolate Cake ingredients available in a pure text

message illustrated in Figure 5.1. To provide a proper input to current IETS meth-

ods, a user would have to scan the message and manually separate each record

containing the specification of an ingredient in the recipe. Notice the cases in which

attributes Quantity and Unit are missing in the input message. Automatically pro-

cessing several of such messages with current IETS methods is unfeasible, even if

they come from the same source.

To deal with this scenario we present JUDIE (Joint Unsupervised structure Dis-

covery and Information Extraction), a method for IETS that addresses the problem

of automatically extracting several implicit records and their attribute values from

a single text input. Unlike previous methods in the literature, ours is capable of

detecting the structure of each individual record being extracted without any user

intervention. The table in Figure 5.1 illustrates the output of our method when the

text on the top is given as input.
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1/2 cup butter 2 eggs 4 cups white sugar 1/2 cup milk 1 1/2 cups applesauce 2 ta-
blespoons dark rum 2 cups all-purpose flour 1/4 cup cocoa powder 2 teaspoons baking
soda ground cinnamon 1/8 teaspoon salt 1 cup raisins 6 chopped pecans 1/4 cup dark
rum

Quantity Unit Ingredient

1/2 cup butter
2 eggs
4 cups white sugar

1/2 cup milk
1 1/2 cups applesauce

2 tablespoons dark rum
2 cups all-purpose flour

1/4 cup cocoa powder
2 teaspoons baking soda

ground cinnamon
1/8 teaspoon salt
1 cup raisins
6 chopped pecans

1/4 cup dark rum

Figure 5.1: Chocolate Cake ingredients (top) and structured data extracted from it
(bottom).

To uncover the structure of the input records, we use a novel algorithm, called

Structure Discover (SD) algorithm, which is based on the HotCycles algorithm pre-

sented in [26]. The SD algorithm works grouping labels into individual records by

looking for frequent patterns of label repetitions, or cycles, among a given sequence

of labels representing attribute values. We also show how to integrate this algorithm

in the information extraction process. This is accomplished by successive refinement

steps that alternate information extraction and structure discovery. Following, we

present a brief overview of our method.

5.2 Overview

Given an input text with a set of implicit data records in textual format, such as the

one illustrated in Figure 5.1, the first step of our method performs an initial labeling
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of the candidate values identified in this input with attribute names. As at this point

there is no information on the structure of the data records, we resort only to content-

based features (Section 3.3) for this labeling. Thus, this step, called Structure-free

Labeling, generates a sequence of labels in which some candidate values may be

missing or have received a wrong label. Despite being imprecise, this sequence of

labels is accurate enough to allow the generation of an approximate description of

the structure of the records in the input text (as demonstrated in our experiments).

This is accomplished in the second step of our method, called Structure Sketching,

by using the SD algorithm.

The output of Structure Sketching step is a set of labeled values grouped into

records that already bear a structure close to the correct one. Thus, from these

records it is possible to learn structure-based features (Section 3.4). These features

can now be used to revise the Structure-free Labeling from the first step. This

Structure-aware Labeling is the third step of our method. As demonstrated by our

experiments, the results produced by this step are more precise than those obtained

by the Structure-free Labeling, since now content-based and structure-based features

are taken into consideration.

Our method then takes advantage of the more precise sequence of labels to revise

the structure of the records. This new sequence is given as input to the SD algorithm.

This is the fourth and final step of our method. It is called Structure Refinement.

Notice that all of these steps are completely unsupervised.

In what follows we describe in details our method by describing the main four

steps that comprise it. For that, we use a running example illustrated in Fig-

ures 5.2(a) to (f). We consider that the unstructured sequence of tokens corre-

sponding to a list of items of a chocolate cake recipe, shown in Figure 5.2(a), is

given as input. Our method then carries out the task of simultaneously extracting

the components of each item, i.e., Quantity (Q), Unit (U) and Ingredient (I), and

structuring them into records. The final output is illustrated in Figure 5.2(f).
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1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla(a)

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla(b)

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

Q U I Q U I U I Q U I Q U I Q I I? I

(d)

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

Q U I Q U I U I Q U I Q U I Q I IU Q

(e)

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

Q U I Q U I U I Q U I Q U I Q I IU Q

(f)

I?

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla(c)

Q U I Q U I U I Q U I Q U I Q I I

Figure 5.2: Running example with illustrations of the main steps that comprise
JUDIE.

5.3 Structure-Free Labeling

Given an unstructured input text containing a set of implicit data records in textual

format, such as the one illustrated in Figure 5.2(a), the first step of our method

consists of initially labeling potential values identified in this input with attribute

names. As at this point there is no information on the structure of the data records,

we resort only to content-based features (Section 3.3) for this labeling. Thus, we call

this step Structure-free Labeling. All content-based features we use can be computed

from a pre-existing dataset. We call the pre-existing datasets as called Knowledge

Bases. The Knowledge Base concept is described in Section 3.2.

The content-based features considered by JUDIE are the ones that were previ-

ously introduced in Section 3.3. These features are: (1) Attribute Vocabulary, for

exploiting the common vocabulary often shared by values of textual attributes (2)

Attribute Value Range, for dealing with numeric attributes using the average and

the standard deviation of the values of numeric attributes available on the knowledge

base and (3) Attribute Value Format, for exploiting common writing style often used

to represent values of attributes. In the following, we describe how these features

are used to process the structure-free labeling.
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5.3.1 Processing the Structure-free Labeling

The targets of the structure-free labeling are sequences of tokens in the input text

that are likely to represent attribute values. We call them candidate values and they

are defined as follows.

Let I = t1, t2, . . . , tn be the set of tokens occurring in an input text, such that

no token contains white space. Consider a knowledge base representing attributes

A1, . . . , Am. A likely value in I is the largest sequence of tokens s = ti, ti+1, . . . , ti+k

(1 ≤ i ≤ n, k ≥ 0) from I that occurs as a value, or part of a value, of some attribute

Aj. In the input text I, all likely values and all individual tokens that do not belong

to any likely values are called candidate values.

Figure 5.2(b) illustrates the candidate values found in the input text of Fig-

ure 5.2(a). Notice that candidate values such as “raising flour” and “Melted butter”

can only be likely values. In the knowledge base we use in our experiments for the

Cooking Recipes domain, values such as “Milk” and “Salt” are represented. Thus,

the corresponding candidate values, in spite of being formed by a single token, are

also likely values. On the other hand, “Tbsp” is not present in that knowledge base.

Thus, it is an isolated token taken as a candidate value.

Given a candidate value s, the decision on what label must be assigned to it takes

into account different domain-dependent features gk evaluated by feature functions

of the form gk(s, A). To combine these features, we assume that they represent the

probability of the candidate value s to occur as a value of the attribute A domain,

according to the knowledge base. These content-based features are combined using

a Bayesian disjunctive operator or, as described in Section 3.5.1.

The results of applying the structure-free labeling over the input sequence of

Figure 5.2(a) is illustrated in Figure 5.2(c), in which capital letters represent labels

assigned to candidate values, each label representing an attribute as follows: Q for

Quantity, U for Unit and I for Ingredient. Notice that one of the candidate values is

marked with a “?”, meaning that no label could be assigned to it. This exemplifies
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one of the anticipated limitations of the structure-free labeling, which we discuss

below.

5.3.2 Limitations of the Structure-free Labeling

The use of very effective domain-dependent features yields a highly precise label

assignment in the structure-free labeling step. This claim is supported by the results

of extensive experiments we report in this paper, involving more than 30 distinct

attributes on five distinct datasets.

In spite of that, using such features may represent a problem in two important

cases: (1) two (or more) attributes in the same knowledge base are similar with

respect to the property being evaluated by the feature function; (2) the property

being evaluated is under-represented within the known values of some attribute in

the knowledge base. In the first case, wrong labels can be assigned to some segment,

i.e., a label misassignment occurs. In the second case, there is no support for “safely”

assigning a label to that segment, i.e., a label fault occurs.

In Figure 5.2(a) we exemplify these two cases by shadowing the labels assigned

to two of the candidate values. For the candidate value “Tbsp”, the “?” indicates

a label fault, while for the candidate value “a little” the shadowed “I” indicates a

label misassignment. In this second case, the correct label would be “Q”.

For dealing with such cases, state-of-the-art information extraction methods rely

on features that also consider the context in which the segment being evaluated

occurs within the input text. These features are derived from the structure of the

record used as training data [1, 9, 17, 22, 45, 48, 73].

In our case, it is not possible to use these structure-based features simply because

our input text bears no structure. However, imprecise as is, this sequence of labels

generated by the structure-free labeling is accurate enough to allow the generation

of an approximate description of the structure of the records in the input text. This

is accomplished by the second step of our method, called Structure Sketching, which
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we describe next.

5.4 Structure Sketching

The goal of the structure sketching step is to organize the labeled candidate values

into records, effectively inducing a structure on the unstructured text input. As this

step takes as input the labels generated in the structure-free labeling step, in which

imprecisions are expected, we consider this structure as a first approximation. The

output of this step is a set of labeled values grouped into records that already bear a

structure close to the correct one. In our method, this step plays an important role:

with the structure of the input text uncovered, we can evaluate structural features

and improve the initial labeling from the first step.

The structure sketching step uses a novel algorithm called Structure Discover

(SD). Let `1, `2, . . . , `n be a sequence of labels generated by the structure-free label-

ing step, in which each label was assigned to a candidate value. The SD algorithm is

used to identify in this sequence common subsequences of labels that are frequently

repeated in the input text, which we call cycles. When a cycle that covers all the

input text is found, it can be used to group labels in sub-sequences according to it.

Each of these subsequences corresponds to a record grouping values from distinct

attributes. These subsequences are called candidate records. We postpone a detailed

discussion of the SD algorithm to Section 5.7.

The result of applying the SD algorithm on the labeled sequence of Figure 5.2(c)

is shown in Figure 5.2(d). Notice that now candidate values are grouped into distinct

sub-sequences, that is, into candidate records. In this example, the cycle found is a

simple sequence of the attributes Quantity, Unit and Ingredient.

As this example illustrates, the algorithm is able to deal with irregularities in

the candidate records, such as missing or repeated attribute values. Dealing with

irregularities is important not only to address natural irregularities often found in
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real cases, but also to make the process robust to errors caused by the labeling

process. In this particular example, while a candidate value of attribute Quantity is

indeed missing in the third candidate record, the sequence of three candidate values

for attribute Ingredient in the last candidate record is caused by an error in the

structure-free labeling step.

As our experimental results indicate, in spite of these and others irregularities

(e.g., candidate records with distinct orderings of attribute occurrence), the SD

algorithm is able to discover a plausible structure for the input sequence of labels.

Again, we refer the reader to Section 5.7 for details on the SD algorithm.

With a plausible structure already uncovered by the SD algorithm, it is now pos-

sible to compute structure-based features in conjunction with content-based features

to improve the initial labeling of the candidate values. This procedure is explained

next.

5.5 Structure-Aware Labeling

Consider a candidate record R = s1, . . . , sr, where each si(1 ≤ i ≤ r) is a candidate

value. Also, consider an attribute A and let `A be a label used for this attribute.

Then, for any candidate value si, we can compute the value of a feature function

fk(si, A,R), which is related to the structure of R.

Differently from the content-based features used so far, which are only domain-

dependent, structure-based features such as fk depend on the particular organization

of the candidate values within the input text. This means that these features are

source-dependent.

Like other information extraction methods (e.g., [22, 48, 73]), our method uses

two structure-based features. The first considers the absolute position of the segment

and the second considers its relative position, i.e., its occurrence between segment

si−1 (if any, i.e., when i > 0) and segment si+1 (if any, i.e., when i < r).
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For computing such features, it is common to use a graph model that represents

the likelihood of attribute transitions within the input text (or any other input

text from the same source). JUDIE uses a probabilistic HMM-like graph model

called PSM (Positioning and Sequencing Model), which is described in details in

Section 3.4. With the structure-based features in hand, we can use them to improve

the initial structure-free labeling, as we describe next.

Given a candidate value s, the decision on which label to assign to it can now

consider the structure-based features in addition to the content-based features. As

these features are also independent from the content-based ones, since they depend

on the source, we again resort to the Bayesian Noisy-OR-Gate [57] to combine all

features. The process of combining such features is described in Section 3.5.2.

The result of applying the structure-free labeling over the candidate records of

Figure 5.2(d) is illustrated in Figure 5.2(e). Notice that with the addition of the

structure-based features, the candidate value “Tbsp” is now correctly labeled as U

for Unit (this term is indeed used in place of “tablespoon”). For the same reason,

candidate value “a little” is now correctly labeled as Q for Quantity.

As this example suggests, in general, combining structure-based and content-

based features produce more precise results than the initial structure-free labeling.

This trend is clearly indicated by our experiments.

Our method then takes advantage of this more precise sequence of labels to also

revise the structure of the records. This new sequence is given as input to the SD

algorithm. This is the fourth and final step of our method.

5.6 Structure Refinement

This last step of our method simply consists in applying again the SD algorithm.

This time, however, it takes as input the labels generated by the structure-aware

labeling. As the labeling produced by this step is more precise, the result is a more
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accurate structure. This is also indicated by our experimental results.

To illustrate it, notice that in Figure 5.2(f) the last candidate record from Fig-

ure 5.2(g) has now been split in two different records by the SD algorithm. In the

next section we described in details the the SD algorithm.

5.7 The SD Algorithm

The main intuition behind the SD algorithm is that it is possible to identify patterns

of sequences by looking for cycles into a graph that models the ordering of labels in

the labeled input text. This graph, called Adjacency Graph, is defined below.

Adjacency Graph. Consider the sequence s1, s2, . . . , sn of candidate values in the

input text, such that si is labeled with `i. The ordered list L = 〈`1, `2, . . . , `n〉 is

called an Adjacency List. An Adjacency Graph is a digraph G = 〈V,E〉 in which V

is the set of all distinct labels in L, plus two special labels begin and end, and E is

the set of all pairs 〈`i, `j〉 in E for all i, j such that j = i + 1 (1 ≤ i ≤ n− 1), plus

two special edges 〈begin, `1〉 and 〈`n, end〉.

Title Conference Year Author Author Title Conference Year Author Title Conference
Year . . . Author Title Journal Issue Year Author Title Journal Issue Year Author Author
Journal Issue Year Title Year . . . Author Title Conference Year Author Author Author
Title Journal Issue Year

begin

Title end

Author Journal

Conference

Year

Issue

Figure 5.3: An Adjacency List and an Adjacency Graph for an input text with
bibliographic data.

Figure 5.3 illustrates portions of an Adjacency List built from a sample unstruc-

tured text containing a number of implicit bibliographic data records. This sample is
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a simplified version of a real bibliographic data source such as CORA (a dataset we

have used in our experiments) represented by some of the attributes involved (e.g.,

no volume or page information is represented). This sample, however, exemplifies

some of the problems faced when processing real textual inputs.

Figure 5.3 also illustrates an Adjacency Graph built from this Adjacency List. In

this graph, nodes corresponding to attributes are represented by ellipses identified

by their respective labels in the adjacency list. Nodes begin and end are considered

as if they occurred only once in this list, respectively, before and after the sequence

of candidate values s1, . . . , sn. Their role is simply to serve as references for the

graph processing algorithms used by our method.

The two long paths 〈Author,Title,Conference,Year〉 and 〈Author, Title,Journal,

Issue,Year〉 correspond, respectively, to publications in conferences and journals.

Notice, however, that some edges indicate the occurrence of implicit records with

missing attributes. This is the case of the edge 〈Author,Journal〉 that indicates a

missing value for Title. Also notice that 〈Year,Author〉 and 〈Year,Title〉 intuitively

indicate records ending with an Year candidate value leading to another record that

may begin with either Author or Title. Indeed, the first implicit record in the input

text begins with a Title candidate value.

The occurrence of implicit records with missing attributes is a very common

issue in most real cases. This situation occurs either due to errors in the labeling

process, specially in the case of the structure-free labeling, or because the implicit

record indeed has no value for some attributes.

An important aspect the SD algorithm exploits in the adjacency graph is the

occurrence of cycles. A cycle is a sequence of adjacent nodes 〈`i, . . . , `i+k, `i〉. For

convenience, we use the notation [`i, . . . , `i+k], omitting the last node, which is always

equal to the first one.

The different configurations of implicit records, i.e., the set of attributes com-

posing them and the order in which their candidate values appear, can be de-
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tected by looking for cycles in the adjacency graph. This is the case of cycles

[Author,Title,Conference,Year], [Author,Title,Journal,Issue,Year] and [Title,

Conference,Year] in Figure 5.3.

Two important issues arise when using the adjacency graph to analyze the pos-

sible record structures in the input text: (1) in which order the labels in the cycle

occur in the input text and (2) which cycles correspond to actual implicit records

in the input text. To deal with both issues, we verify the correspondence between

cycles and the sequence of labels in the adjacency list. For the definitions below, let

G be an adjacency graph generated from an adjacency list L.

Coincident Cycles. Two cycles ca and cb are said to be coincident, meaning that

they represent the same cycle in G, if they include the same edges in the same order,

but beginning and ending at a different node in the cycle.

Cycle Instances and Viable Cycles. Let c = [`i, . . . , `i+k] be a cycle in G. Any

sequence `i, . . . , `i+k in L is said to be an instance of c. The cycle c is said to be

viable if there is at least one instance of c in L.

Dominant Cycles. Let {c1, . . . , cn} be a set of coincident cycles. The viable cycle

ci for which the order of labels is the most frequent in L is called the dominant cycle.

To exemplify these concepts, cycles ca = [Author,Title,Conference,Year] and cb =

[Title,Conference,Year,Author] are coincident in the adjacency graph of Figure 5.3.

By looking into the adjacency list, we find that cb is the dominant cycle.

These concepts are used by the SD algorithm (Algorithm 2). This algorithm

works by first identifying all dominant cycles in the adjacency graph and then pro-

cessing each of these cycles in the order of their sizes, the largest cycles being pro-

cessed first. Notice that nodes begin and end never participate in any cycle, since

they are both connected to the graph by a single edge.

In Lines 2 and 3, the Adjacency List and the Adjacency Graph are created.

Next, in Lines 4 and 5, the algorithm detects all single cycles in the graph in order
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Algorithm 2 Structure Discovery Algorithm

1: L← adjlist(I);
2: G← adjgraph(L);
3: for all single cyle [`, `] in G do
4: Replace all sequences `, . . . , ` by one single element `+ in L
5: end for
6: G← adjgraph(L);
7: C ← dominantcycles(G);
8: i← 0;
9: while C 6= ∅ do
10: dci ← next(C);
11: for each instance `1, . . . , `k of dci in L do
12: Replace `1, . . . , `k by ri in L;
13: end for
14: i+ +;
15: end while

to remove all sequences of a same label from the adjacency list. Such sequences

usually represent multivalued attributes (e.g., lists) that must be considered as a

single component in the records being identified. Thus, these sequences are replaced

by a single label `+ in the adjacency list.

In Line 6, a new Adjacency Graph is generated for reflecting the removal of

theses sequences. If we consider the graph in Figure 5.3, the only effect will be the

removal of the cycle involving Author.

In Line 7, the algorithm extracts all dominant cycles from G. Next, these dom-

inant cycles are used to structure their instances in the input text. This is carried

out by the loop in Lines 9 to 13. In Line 10, the function next selects and removes

the largest dominant cycles from C and, in Lines 11 and 12, the instances of the

cycles in the adjacency list L are replaced by an indication that a record has been

formed with each of these instances. Thus, in our algorithm, records are taken as

cycle instances whose boundaries are determined by matching cycles derived from

the graph to the adjacency list (Line 11).

We notice the importance of processing larger cycles first. Considering the graph

in Figure 5.3, if the cycle cb = [Title,Conference,Year] was processed before ca =
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[Author,Title,Conference,Year], part of each instance of cb would be taken as a

instance of ca. This process continues while there are cycles unprocessed in C.

For the Adjacency List and the Adjacency Graph of Figure 5.3, the sequence of

dominant cycles that would be processed is the following: [Author,Title,Journal,Issue,

Year], [Author,Title,Conference,Year], [Author,Journal,Issue,Year], [Title,Conference,

Year] and [Title,Year].

5.8 Experimental Evaluation

In this section, we describe the experiments we have performed to evaluate JUDIE

using five distinct datasets. First, we describe the experimental setup used to assess

JUDIE ’s performance. Then, we report on the quality of the extraction results for

each dataset.

5.8.1 Setup

The datasets employed in our experiments and the data sources used to generate

the knowledge bases for JUDIE are summarized in Table 5.1. We notice that some

of these datasets are the same employed in the evaluation of other information

extraction methods. We also recall that our method takes as input sets of records

without any explicit delimiters between them, as illustrated in Figure 5.1.

Domain Dataset Text
Inputs

Attributes Source Attributes Records

Cooking
Recipes

Recipes 500 3 FreeBase 3 100

Product
Offers

Products 10000 3 Neemu.com 3 5000

Postal
Addresses

BigBook 2000 5 BigBook 5 2000

Bibliography CORA 500 3 to 7 PersonalBib 7 395
Classified
Ads

WebAds 500 5 to 18 Folha
On-line

18 125

Table 5.1: Domains, datasets and KB data sources used in the experiments.
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The dataset of the Cooking Recipes domain was previously used in [8]. In order to

build the knowledge base for this domain, we have collected structured recipes from

FreeBase1. For the Product Offers domain, the dataset is formed by unstructured

strings containing lists of product offers from 25 Brazilian e-commerce stores. Data

for building the respective knowledge base has been taken from Neemu2, a Brazilian

price comparison website. For the Postal Addresses domain, both the dataset and

the data source used to build the knowledge base have been obtained from Bigbook,

a dataset available in the RISE repository3 and that has been previously used in [73]

and [22].

For the Bibliography domain, the dataset is part of the Cora Collection4 and is

composed of a large diversity of bibliographic citations in distinct styles and formats.

It includes citations to journal articles, conference papers, books, technical reports,

etc. The data source for building the knowledge base, PersonalBib, is also a dataset

of bibliographic citations that has been used in [48]. Finally, for the Classified

Ads domain we have taken the dataset previously used in [22]. This dataset is

composed of unstructured strings containing ads from Brazilian newspaper websites.

For building the knowledge base, we have collected data from a database available

on the website of a major Brazilian newspaper.

For all performed experiments, we evaluated the extraction results for each in-

dividual attribute (attribute-level) and for each record type as whole (record-level).

As evaluation metrics, we have used the well known precision, recall and F-measure

as defined next.

Let Bi be a reference set and Si be a test set to be compared with Bi. We define

precision (Pi), recall (Ri) and F-measure (Fi) respectively as:

Pi =
|Bi ∩ Si|
|Si|

, Ri =
|Bi ∩ Si|
|Bi|

and Fi =
2(Ri.Pi)

(Ri + Pi)

1http://www.freebase.com
2http://www.neemu.com
3http://www.isi.edu/info-agents/RISE
4http://www.cs.umass.edu/~mccallum/data
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In order to present attribute-level results, we calculate precision, recall and F-

measure according to the above equations by considering Bi as the set of terms that

compose the values of a given attribute ai and Si the set of terms assigned to ai

by our method. Likewise, for record-level results, we calculate precision, recall and

F-measure by considering each record set Bi as the set of field values in a given

structured record Ci and Si the set of field values extracted for Ci by our method.

5.8.2 General Quality Results

In this section, we analyze the general quality of the extraction task performed by

JUDIE on the datasets described in Table 5.1. For each domain, we have run the

extraction task five times, each time selecting different data samples for the data

extraction task and for building the respective knowledge bases. For all performed

extractions, we report the average F-measure obtained for all runs. We also notice

that there is no intersection between the knowledge bases and the corresponding

datasets we use in our experiments.

Tables 5.2(a)–(c) and 5.3 (a)–(b) present attribute-level F-measure values that

assess the extraction quality in each dataset. Column “C1” refers to results obtained

after the Structure-free Labeling and Structure Sketching steps, which correspond

to what we call Phase 1, and Column “C2” refers to results obtained after the

Structure-aware Labeling and Structure Discovery steps, which correspond to what

we call Phase 2. Column “G” presents the gain achieved from Phase 1 to Phase 2.

Each of these columns assesses a distinct aspect of our method. Results in

column “C1” assess how well the content-based source-independent features alone

have been able to assign correct labels to the input text, while results in column

“C2” also account for the use of structure-based source-dependent features learned

from the input text itself.

To provide a perspective on the contribution of each feature to the overall extrac-

tion quality, we also present F-measure values obtained when each type of feature is
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Phase 1 Phase 2

Attribute FI/NM FO C1 S+P C2 G %

Quantity 0.81 0.69 0.89 0.78 0.96 7.1

Unit 0.86 0.46 0.91 0.82 0.94 3.9

Ingredient 0.84 0.74 0.91 0.76 0.96 4.9

Average 0.84 0.63 0.90 0.79 0.95 5.3

(a) Recipes

Phase 1 Phase 2

Attribute FI/NM FO C1 S+P C2 G %

Name 0.77 0.37 0.85 0.69 0.90 5.3

Brand 0.74 0.52 0.83 0.71 0.92 10.5

Price 0.89 0.92 0.93 0.88 0.95 1.9

Average 0.80 0.60 0.87 0.76 0.92 5.8

(b) Products

Phase 1 Phase 2

Attribute FI/NM FO C1 S+P C2 G %

Name 0.79 0.48 0.94 0.63 0.97 2.6

Street 0.82 0.40 0.95 0.75 0.97 2.6

City 0.92 0.39 0.94 0.84 0.97 2.8

State 0.89 0.63 0.96 0.88 0.97 1.3

Phone 0.94 0.93 0.95 0.89 0.97 2.3

Average 0.87 0.57 0.95 0.80 0.97 2.3

(c) BigBook

Table 5.2: Attribute-level results for datasets Recipes, Products and BigBook.

individually used. The cases considered are: (1) either the fitness function for tex-

tual attributes (Eq. 3.2) or the NM function for numeric attributes (Eq. 3.3) is used

(Column “FI/NM”); (2) only the format function (Eq. 3.5) is used (Column “FO”);

and (3) only the pos and seq (Eq. 3.8) functions are used (Column “S+P’). We recall

that “C1” results are obtained by combining in Phase 1 functions fitness (or NM )

and format by using Eq. 3.9, and that “C2” results are obtained by combining in

Phase 2 functions fitness (or NM ), format, pos and seq by using Eq. 3.10.

As anticipated, we observe that the attribute-level results obtained in Phase 1

by combining features are already acceptable and, more importantly, are sufficient

to yield a reasonable approximation of the records’ structure. Furthermore, the

fitness and MN functions are, in general, more accurate than the format function.
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Phase 1 Phase 2

Attribute FI/NM FO C1 S+P C2 G %

Author 0.79 0.60 0.83 0.65 0.88 5.9

Title 0.60 0.52 0.70 0.48 0.79 13.8

Booktitle 0.82 0.46 0.81 0.67 0.86 6.2

Journal 0.69 0.53 0.72 0.62 0.84 16.9

Volume 0.84 0.88 0.88 0.72 0.90 2.9

Pages 0.79 0.80 0.83 0.73 0.86 3.9

Date 0.72 0.76 0.79 0.69 0.87 9.5

Average 0.75 0.65 0.79 0.65 0.86 8.1

(a) CORA

Phase 1 Phase 2

Attribute FI/NM FO C1 S+P C2 G %

Bedroom 0.75 0.36 0.79 0.48 0.82 3.8

Living 0.81 0.46 0.85 0.69 0.89 5.6

Phone 0.79 0.84 0.80 0.62 0.87 8.8

Price 0.85 0.85 0.86 0.66 0.92 7.2

Kitchen 0.80 0.29 0.79 0.73 0.83 4.9

Bathroom 0.73 0.59 0.75 0.69 0.77 2.9

Suite 0.85 0.45 0.87 0.60 0.89 2.4

Pantry 0.79 0.50 0.77 0.66 0.80 3.7

Garage 0.78 0.52 0.79 0.73 0.84 6.6

Pool 0.77 0.63 0.78 0.78 0.82 5.2

Others 0.70 0.44 0.72 0.68 0.73 1.6

Average 0.78 0.54 0.80 0.67 0.84 4.8

(b) WebAds

Table 5.3: Attribute-level results for datasets CORA and WebAds.

However, their combination, as proposed in our method, leads to better results in

all cases.

Phase 2 results are higher in all cases. While in most cases the gain is under

6%, there are interesting cases in which this gain is above 10%. For example, Title

and Journal are attributes that present a large content overlap in the Bibliography

dataset. Due to this problem, the percentage of labels incorrectly assigned to values

of Title and Journal in Phase 1 was 25% and 16% respectively. In Phase 2, the

majority of these misassignments were corrected. A large gain was also observed

in the case of attribute Brand from the Products dataset. Because brand names

are formed by terms usually not available in the knowledge base, more than 12%
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of values of this attribute were left unmatched in Phase 1. The structure-based

features used in Phase 2 helped to recover these errors.

The behavior of our method when dealing with numeric attributes deserves spe-

cific comments. Considering the eight numeric attributes from the five distinct

datasets used in our experiments, the NM function yielded an average attribute-

level F-measure of 0.83 when used alone. This result is close to that obtained for

the non-numeric attributes using the fitness function. For instance, with phone num-

bers, using only the NM function we obtained F-measure values of 0.94 and 0.79

for the BigBook and WebAds datasets, respectively. Moreover, the format function

is also used with these attributes, but, in this case, unlikely to what happens with

the NM function, values are not normalized. When used alone, this function also

yielded an average F-measure of 0.83. Finally, the structure-based features helped

to improve these results. When combined with the other two features, an average

F-measure of 0.91 was obtained. As we can see, our method achieves equally good

results with both numeric and textual attributes.

Dataset Phase 1 Phase 2 Gain %

Recipes 0.79 0.90 13.2

Products 0.82 0.88 7.2

BigBook 0.86 0.93 8.8

CORA 0.69 0.83 19.3

WebAds 0.70 0.77 9.7

Table 5.4: General record-level results for each dataset.

Table 5.4 presents, for each dataset, record-level F-measure results obtained in

Phase 1 and Phase 2. While results in Phase 1 are also acceptable (most of them

above 0.7), improvements in labeling achieved in Phase 2 had a very positive effect.

Indeed, in Phase 2 record-level F-measure has achieved results above 0.8 for four out

of five datasets and, in all cases, gains have been above 7%. Notice, for instance,

the case of the CORA dataset, in which the gain is higher than 19%, reflecting

the improvements obtained by the structure-aware labeling step. As we can notice,

adding the structure-based features (only possible in Phase 2) also leads to significant
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improvements regarding record-level results.

5.8.3 Impact of the Knowledge Base

In [22] the authors present an experiment to evaluate how dependent on the com-

position of the knowledge base is the quality of the extraction results.

In the case of JUDIE such study is even more important for the following reasons:

(1) the extraction process entirely relies on the initial Structure-free Labeling step,

which is solely based on content-based features learned from the knowledge base;

(2) while in our closest competitor, ONDUX [22], the knowledge base is used only

for matching, JUDIE also deploys a format feature based on its values. Thus, in

JUDIE the knowledge base plays a crucial role, as we show in this experimental

evaluation.

Here we compare JUDIE with ONDUX and U-CRF. These two methods are

the current state-of-the-art unsupervised IETS methods. U-CRF was developed

by adapting the publicly available implementation of CRF by Sunita Sarawagi5

according to [73] and using additional features described in [45] (e.g., dictionary

features, word score functions, transition features, etc.). As required by U-CRF, a

batch of input strings is used to infer the order of the attribute values. Based on

the information provided in [73], this batch is built using a sample of 10% of these

strings.

As in [22], this experiment was performed using the BigBook dataset from the

RISE repository. The knowledge base for ONDUX and JUDIE and the reference

table for U-CRF were built by using sets of records already extracted. Once again,

we notice that there is no intersection between these records and the corresponding

datasets used in this experiment. Recall that while ONDUX and U-CRF received

the input in a record-by-record basis, JUDIE received a single input text containing

all 2000 records with no explicit delimiters between them.

5http://crf.sourceforge.net/
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The experiment consisted of varying the number of known terms common to the

knowledge base (or reference table in the case of U-CRF) and the input test records

from 50 to 1000 terms and evaluating the extraction quality in terms of average

attribute-level F-measure. The results are presented in Figure 5.4(a).

(a) Varying the number of shared terms. (b) Results for distinct Ads sources.

(c) Results varying diversity.

Figure 5.4: Results obtained by our method varying distinct aspects in the input
texts.

The first important observation regarding this graph is that JUDIE is, as ex-

pected, more dependent on the knowledge base than ONDUX and U-CRF. Indeed,

only when the number of shared terms approaches 1000, it reaches the same qual-

ity level as the baselines. This occurs because in both ONDUX and U-CRF the

structure-based and content-based features are independent, while in JUDIE, as

previously explained, content-based features are used to induce structured-based

features through successive refinement steps.
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Indeed, if content-based features are not enough, the induction of structure-based

features fails. This can be observed in Figure 5.4(a), where the attribute-level F-

measure values obtained with less than 250 common terms are very low. For this

level of term intersection, the results of JUDIE ’s Phase 1, i.e., before any refinement,

are better than the results of its Phase 2, in which structure-based features are also

considered.

In spite of this limitation, JUDIE achieves results comparable to the state-of-

the-art baselines for a task considerably harder, that is, extracting information while

simultaneously uncovering its underlying structure. As already explained, this un-

derlying structure is assumed as provided in the baseline methods. In Section 4.5.5,

we present a detailed comparison between JUDIE and these baselines using other

datasets.

5.8.4 Impact of Structure Diversity

In this section we study how our method deals with different types of structure

observed in the implicit records found in the input text. For this we consider two

different scenarios, structure diversity in different sources and within a single source.

These two scenarios are discussed in the following.

5.8.4.1 Structure Diversity in Different Sources

To discuss the first scenario we use the Classified Ads domain, for which the knowl-

edge base was build using data from one source and the input texts came from other

five distinct sources. In the experiments reported below, each source corresponds

to a different input text. Here, our goal is to demonstrate that the content-based

features learned from data taken from one source can be used to induce the structure-

based features for several related input texts from other distinct sources in the same

domain.

In Figure 5.4(b) we show the attribute-level and record-level F-measure values
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obtained for each different source given as input to JUDIE. In all cases, the values

are above 0.7 and for two cases they are above 0.8. This indicates that our method

is source-independent, since it was able to correctly uncover the structure of implicit

records in each source while also achieving good extraction level quality. This occurs

despite the differences in structure of the implicit records in each source.

5.8.4.2 Structure Diversity within a Single Source

For discussing the second scenario we use the Bibliography domain in which the

knowledge base was built from the PersonalBib dataset [48] and single input texts

came from the CORA collection. In this case we aim at showing how our method

deals with a heterogeneous dataset in terms of structure.

By examining the distribution of citation styles among the 500 implicit records

available in the CORA dataset, a total of 33 distinct styles were identified, but only

six of them account for more than 90% of the citations6.

For these experiments, we generated different input texts containing 100 to 500

implicit records randomly selected from the CORA dataset. We then process each of

these input texts separately with JUDIE using the knowledge base described above.

The process was repeated 10 times for each input text size.

To characterize the diversity of each input text we have used the Shannon In-

dex [67], which is frequently used to measure diversity in categorical datasets. This

index is defined as: H = −∑S
i=1 piln(pi), where S is the total number of styles (33

in this case) and pi is the relative frequency of each style i found in the input text.

As the H index does not return values between 0 and 1, we normalize H values ob-

tained for each input text by the maximum possible value for H. This value occurs

when the input contains all citations available in the CORA dataset, that is, when

all 33 different citation styles are present in the input text7. Thus, the closer the

normalized H value is to 1, the greater is the diversity of the input text.

6A citation style characterized by the set of attributes composing the record and their ordering.
7H = 2.23671 for the input containing 500 records.
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The results obtained are presented in Figure 5.4(c) in terms of the average record-

level F-measure, considering Phases 1 and 2 of JUDIE. As a baseline, we use the

record-level F-measure we would obtain if the labeling of attribute values was perfect

in the input texts. In the X-axis, we present the number of records and the diversity

of each input text in terms of the normalized H index.

This figure shows that our SD algorithm deals very well with structure diver-

sity if the labels are correctly assigned, as it can be seen by comparing the curves

representing JUDIE Phase 1 and the perfect labeling. As we can also observe, the

improvements on the quality of the labeling provided by adding the structure-based

features in Phase 2 impacts positively on the quality of the structure discovery. In-

deed, record-level F-measure values obtained in Phase 2 are close to those obtained

with the perfect labeling.

5.8.5 Comparison with Previous Work

In this section we present a comparison between the results obtained by JUDIE

with those obtained by two state-of-the-art IETS methods, namely ONDUX [22]

and U-CRF [73].

This comparison is made by reproducing in Tables 5.5(a) to (c) the attribute-level

results obtained for three datasets, which were reported in [22] for the two methods,

along with the results we obtain by running JUDIE over the same datasets.

While ONDUX was first presented and fully described in that paper, U-CRF

was used there as a baseline. The details on its implementation are summarized

in Section 5.8.3. In all cases, we have used the same sources for generating the

knowledge bases and the input texts. We recall again that among the three methods,

JUDIE is the only one that is able to both discover the structure and extract

information automatically.

As a general observation, in spite of the fact the JUDIE faces a harder task,

its performance was very close to that of ONDUX. In most cases, ONDUX out-
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Attribute JUDIE ONDUX U-CRF

Name 0.967 0.996 (2.97%) 0.995 (2.86%)

Street 0.970 0.995 (2.58%) 0.993 (2.37%)

City 0.971 0.995 (2.43%) 0.990 (1.92%)

State 0.971 1.000 (2.95%) 0.999 (2.84%)

Phone 0.975 1.000 (2.57%) 0.988 (1.34%)

Average 0.971 0.997 (2.70%) 0.993 (2.27%)

(a) BigBook

Attribute JUDIE ONDUX U-CRF

Author 0.881 0.922 (4.65%) 0.876 (-0.57%)

Title 0.794 0.792 (-0.25%) 0.694 (-12.59%)

Booktitle 0.855 0.892 (4.33%) 0.560 (-34.50%)

Journal 0.843 0.908 (7.71%) 0.553 (-34.40%)

Volume 0.901 0.958 (6.33%) 0.430 (-52.28%)

Pages 0.861 0.849 (-1.39%) 0.503 (-41.58%)

Date 0.865 0.895 (3.47%) 0.488 (-43.58%)

Average 0.857 0.888 (3.60%) 0.586 (-31.60%)

(b) CORA

Attribute JUDIE ONDUX U-CRF

Bedroom 0.818 0.861 (5.25%) 0.791 (-3.30%)

Living 0.893 0.905 (1.34%) 0.724 (-18.93%)

Phone 0.873 0.926 (6.12%) 0.754 (-13.59%)

Price 0.923 0.936 (1.41%) 0.786 (-14.84%)

Kitchen 0.830 0.849 (2.29%) 0.788 (-5.06%)

Bathroom 0.773 0.792 (2.51%) 0.810 (4.84%)

Suite 0.894 0.881 (-1.50%) 0.900 (0.62%)

Pantry 0.800 0.796 (-0.55%) 0.687 (-14.17%)

Garage 0.844 0.816 (-3.28%) 0.714 (-15.37%)

Pool 0.818 0.780 (-4.66%) 0.683 (-16.52%)

Other 0.732 0.796 (8.68%) 0.719 (-1.84%)

Average 0.836 0.849 (1.52%) 0.760 (-9.16%)

(c) WebAds

Table 5.5: Comparison of results.

performed JUDIE, but there are a few cases in which JUDIE performed better

than ONDUX. These cases are explained mainly by the use of the format feature in

JUDIE. Such feature is not considered in ONDUX.

In comparison with U-CRF, JUDIE performed worse on the BigBook dataset,

but better on the CORA and WebAds datasets. This was expected, since these
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datasets are much more irregular in terms of structure than the first one.

5.8.6 Performance Issues

In Table 5.6 we present the running times of the experiments executed with JUDIE.

For the datasets we used to run comparative experiments with our baselines ONDUX

and U-CRF, we also include the running times of these systems. As the number of

implicit input records is different for each dataset, we present both the total running

time and the average running time by record.

Datasets
Total (secs.) Avg. per record (msecs.)

JUDIE ONDUX U-CRF JUDIE ONDUX U-CRF

Recipes 37.5 - - 75.1 - -

Products 69.2 - - 6.9 - -

BigBook 50.2 14.1 297.1 25.1 7.1 148.5

CORA 74.4 10.7 185.9 148.8 21.4 371.8

WebAds 59.2 8.0 2701.9 118.5 16.0 5403.7

Table 5.6: JUDIE running times in comparison with baselines.

Before discussing the results, we notice that JUDIE running times depend on two

main factors: the number of implicit input records and the diversity in the structure

of these records. Regarding the first factor, in all steps the input is scanned once.

Thus, there is a linear influence of this factor. As for the second factor, having

more diverse records in terms of structure implies that a larger number of edges

will occur in the Adjacency Graph and in the PSM. Thus, processing these graphs

has higher costs for more heterogeneous structures. This explain why the average

running times per record are higher for CORA and WebAds, which, as discussed in

Section 5.8.4, are the more diverse datasets in our experiments.

Nevertheless, these running times are in the same order of magnitude as those of

ONDUX and are, in general, smaller than those of U-CRF. ONDUX is faster since

it executes fewer steps and does not include a structure discovery step. U-CRF has

a worst performance due to costly inference steps, particularly when dealing with
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diverse structures, and due to the use of a larger number of features than ONDUX

and JUDIE.



Chapter 6

iForm

In this chapter we present iForm, a method for automatically using data-rich text

for filling form-based input interfaces that relies on our proposed approach to deal

with the Information Extraction by Text Segmentation problem.

iForm was first presented in [69] and in [70]. It is a part of a master thesis pre-

sented in [71]. As part of the work here presented we have developed the extraction

engine that supports this method.

In the following, we describe the scenario where iForm is applied, and then,

we describe the method in details. We also report a set of experiments we have

performed that show that iForm is effective and works well in different scenarios.

6.1 The Form-Filling Problem

The Web is abundant in applications where casual users are required to enter data to

be stored in databases for further processing. The most common solution in these

cases is to design form-based interfaces which contain multiple data input fields,

such as text boxes, radio buttons, pull-down lists, check boxes and other input

mechanisms. Unlike typical search forms, these web input forms usually have a

larger number of fields. Figure 6.1 presents a real Web form from the cars domain.

It can be noticed that, as stated above, this form contains multiple fields.
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Although these interfaces are popular and effective, in many cases interfaces

that accept data-rich free text as input, i.e., documents or text portions that contain

implicit data values, would be preferable. Indeed, in many cases the data required to

fill the form fields could be taken from text files in which they are already available.

For instance, a job applicant may use data taken from a resume text file to fill several

fields of forms in many different job search sites.

Figure 6.1: A real Web form from the cars domain.

The method presented here receives a data-rich free text input (e.g., an offer

or ad), such as the one illustrated in Figure 6.2, and extracts implicit data values

occurring in it that can be used to appropriately fill out the fields in a form based

interface. For practical purposes, the user could check if the fields were correctly

filled by the system and make any necessary corrections before inserting the data

into the underlying web database.

Thus, the problem faced by iForm is automatically filling out the fields of a given

form-based interface with values extracted from a data-rich free text document,
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Figure 6.2: An example of car ad in free text.

or portions of such documents. In particular, we identify two sub-problems: (a)

extracting values from the input text and (b) filling out the fields of the target form

using them.

Free text documents are treated as sequences of words t1, . . . , tN , representing

individual words or punctuation. The extraction task consists of identifying seg-

ments from the free text document, i.e., a sequence of contiguous words, which are

suitable values for fields in the form. A segment sij is composed by words from

ti, . . . , tj, such that i ≤ j, i ≥ 1 and j ≤ N . A valid set of values extracted from the

input text must follow two conditions: (1) only a single segment can be assigned

to each field in the form and (2) every extracted segment must be non-overlapping,

i.e., there are no extracted segments sab and scd for a < c such that b ≥ c.

Most of the challenge of the form filling problem is related to sub-problem

(a), since suitable values are sparsely embedded in the text with other non-related

strings. Furthermore, no particular format or order can be assumed for these values.

6.2 The iForm Method

iForm relies on our proposed approach to the IETS problem, presented in Section 3.

In this case, the knowledge base is formed by previous values submitted to each
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form field. For simplicity, we refer to the user free text document or portions as

input text from now on. Users may want to verify the form filled by our method,

make corrections and then proceed with the request submission. After that, the new

assigned values are stored in the knowledge base and considered when new input

texts are provided by users.

The iForm method uses content-based features (Section 3.3) to extract text seg-

ments in the input text that are suitable for filling a given field in a form. iForm con-

siders the following content-based features to perform the extraction task: (1) the

Attribute Vocabulary feature described in Section 3.3.1, which exploits the common

words often shared by values of textual form fields; (2) the Attribute Value feature

that is similar to the Attribute Vocabulary feature, but instead of exploiting the

common words, explores the common values often shared by values of textual form

fields and (3) the Attribute Value Format feature, described in Section 3.3.1, that

exploits the common writing style often used to represent values of fields. Notice

that for simplicity of notation, in this setting, the meaning of “Attribute” is similar

to “Field”.

Also, it is important to stress that these features mentioned above are computed

based on the knowledge base generated with previous values submitted to the form,

and also, no features from the input texts are considered. As shown by Toda et

al. [70], these features can be easily considered as probabilities in a probabilistic

framework.

An interesting property regarding our strategy is that it allows us to correctly

identify segments in the input text that may not correspond to values previously

entered in the field, as long as these segments include words typically found in the

values of this field or have a format usually associated to the values previously used

in that field.

Consider an input text I, which is composed of N > 0 words. Let Sab be

a segment, i.e., a sequence of words in I that includes words ta, ta+1, . . . , tb−1, tb
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(0 < a ≤ b ≤ N). We consider Sab as a suitable value for a field f if the score

returned by our content-based features is above a threshold ε1. Considering L as

the maximum segment length, there are N ∗ L−∑L−1
i=1 i segments in a text with N

words2. As latter detailed, iForm deploys a dynamic programing strategy to avoid

recomputing the scores for all pairs of segments and fields.

In the following we show how our content-based features can be used to extract

text segments from input texts.

6.3 Using Content-Based Features

Given a text segment Sab, iForm decides if this segment is a suitable value of a given

field of the form taking into account different content-based features gk evaluated by

feature functions of the form gk(Sab, f). To combine these features, we assume that

they represent the likelihood of the candidate value Sab to occur as a value of the

field f domain, according to the knowledge base. These content-based features are

combined using a Bayesian disjunctive operator or, as described in Section 3.5.1.

Considering the content-based features described earlier, iForm first computes

the attribute vocabulary feature described in Section 3.3.1. The intuition for the

usage of this feature is that the more concentrated the previous occurrences of a

term are in a field, the higher the likelihood of this field being related to the term.

It can be noticed that the computation of the values of gk(Sab, f) for every

possible segment leads to a redundant computation which can be avoided by using

dynamic programming. Based on this, we can define mpij, the matrix containing

the features result of a field ftk given segment sij as follows:

Let mpij = P (ftk|sij), the following recurrence can be used to compute this

1In all of our experiments, we performed a previous training and selected ε = 0.2.
2In our experiments L is no greater than 10
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feature:

mpij =





gk(ftk|sij) i = j

mpi(j−1) +mpjj i < j
(6.1)

Our dynamic programing algorithm for solving this equation first computes the

simplest case, that is, elements mpij such that i = j. The algorithm then computes

elements in the first row from left to right, and proceeds to the following rows until

all elements in the matrix are defined. This process is repeated for the matrices of

each field.

The second feature considered by iForm, the attribute value feature, exploits

common values often shared by form fields, instead of words. Its computation is

similar to the computation of the attribute vocabulary feature, but, in this case, it

considers the submitted values itself, nor the words that compose these values.

Finally, we also compute the value of gk(Sab, f) considering the attribute value

format feature. Notice that in this case, iForm computes the how likely are the

sequences of symbols representing the text segment Sab to be a value of the field f .

During our experiments, we verified that, in the web form filling task, the at-

tribute value format feature is less precise than the other content-based features.

Indeed, the style information is helpful when token and value features fail to asso-

ciate some segments to a given field. Because of this, we decided to use the writing

style information as part of a refining process.

Thus, the mapping process, described in the next section, uses our content-based

features in two phases, and the attribute value format feature is not taken into

account in the first phase. The first phase only combines the attribute vocabulary

feature and the attribute value feature. In cases where the first phase fails on finding

text segments to fields, iForm takes into account the attribute value format feature

in the combination process (Section 3.5.1).
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6.4 Mapping Segments to Fields

Let Cj be the set of segments Sab such that `(s, A) (see Equation 3.9), which returns

a score with the result of the combination of the content-based features, is above

threshold ε. We say that Cj is a set of candidate values for field Fj.

We aim at finding a mapping M between candidates values and fields in the

form-based interface with a maximum aggregate score, such that (1) only a single

segment is assigned to each field and (2) the selected segments are non-overlapping,

i.e., there are no segments Sab and Scd for a < c in the mapping such that b ≥ c.

This is accomplished by means of a two-step procedure as follows.

In the first step, we begin by computing the candidate values for each field Fj,

based only on the attribute vocabulary feature and the attribute value feature. Let

I be a set composed by the union of the sets of candidate values Cj for all fields Fj.

We refer to I as the initial mapping, which contains segment-field pairs 〈Sab, Fj〉.

We say that two pairs in I are in conflict if they violate any of the conditions above.

Hence, the problem is finding a subset of value-field pairs in I without conflicts

whose aggregate scores are maximum.

Finding the optimal solution for this problem requires assessing all possible sub-

sets – an exponential number. In practice, we use a simple greedy heuristic to find

an approximate solution. First, we extract the pair with the highest score from I

and verify whether it presents conflict to any pair in M or not. If such a pair is

non-conflicting, we add it into the final mapping. We repeat this process until every

pair in I is extracted. This ends the first step.

In the second step, if any field remains not mapped to a segment, we use the

attribute value format feature to try to find further assignments. We then repeat

the mapping process, but now considering only pairs of segments and fields that

were not mapped in the first step.

We adopted the two-step mapping after verifying through experiments that the

attribute value format feature is less precise than the other two features adopted.
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On the other hand, it is still interesting to use writing style information when word

and value features fail in associating some segment to a given field. Thus, we decided

to use the style information as part of a refining process, which is performed in the

second step of the mapping.

6.5 Filling Form-Based Interfaces

The last step in our method consists of using the final mapping M to fill out the

fields of the form-based interface.

In the case of text boxes, we simply enter each mapped text segment as a value

into its corresponding field. For check boxes, we set true for fields that were mapped

inM and false for other check boxes. Since extracted values are rarely equal to items

in pull down lists, this type of field requires more work as we discuss in the following.

In the case of pull-down lists, we aim at finding an item such that its similarity

with the extracted value is maximum.

We measure this similarity by using a “soft” version of the well-known cosine

measure, named softTF-IDF [16]. Unlike the traditional cosine measure, softTF-IDF

relaxes the requirement that terms must exactly match and yields better results in

our problem. The softTF-IDF model also assesses the similarity between terms by

using a similarity measure for strings s. In this way, given a value A and a pull-down

list item B, we define close(θ, A,B) as the set of term pairs (a, b), where a ∈ A and

b ∈ B, and such that s(a, b) > θ and b = arg minb′∈B s(a, b′); i.e., b is a term in B

with the highest similarity to a.

The similarity between a value A and an item B in a pull-down list is defined as

follows.

soft(A,B) =

∑
(a,b)∈close(θ,A,B)

w(a,A) · w(b, B) · s(a, b)
√∑

a∈A
w(a,A)2 ·

√∑
b∈B

w(b, B)2

where w(a,A) and w(b, B) are the weights of terms a and b related to the value



6.6. EXPERIMENTS 99

A and item B, respectively. w(a,A) returns 1 if a occurs in A or 0, otherwise. For

computing w(b, B) we consider the inverse frequency of term b in the pull-down list,

i.e, NL/freq(b, L), where NL is the number of items in the pull-down list L and

freq(b, L) is the number of values in L containing term b.

6.6 Experiments

In this section, we report the results of experiments we have conducted with iForm on

tasks of automatically filling form-based web interfaces.

6.6.1 Setup

In all experiments performed here we simulate a real form-based web interface where

each data-rich free text document is submitted at a time. Users manually verify its

results and, if needed, correct minor errors. After that interaction, the submission

will be completed and new added values will be considered when processing new

submissions from this point on. Notice that we evaluate the system according to

the errors produced on each iteration. In all cases there is no intersection between

the sets of test submissions and the set of previously submitted documents.

Datasets Test Data Previous Data Source – Test Data Source – Previous
Data

Jobs 50 100 RISE RISE

Movies 50 10000 IMDb Freebase and
Wikipedia

Cars 50 10000 TodaOferta TodaOferta

Cellphones 50 10000 TodaOferta TodaOferta

Books 1 to 4 50 10000 Submarino TodaOferta,
IngentaConnect,
Oupress, Netli-
brary

Table 6.1: Features of each collection used in the experimental evaluation

Table 6.1 presents in detail each dataset used in our experimental evaluation.

The column “Test Data” shows the number of input texts submitted to the form-
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based interface. The column “Previous Data” refers to the number of previous

submissions that were performed prior to the test.

The Jobs dataset was obtained from RISE (Repository of on-line Information

Sources used in information Extraction tasks) . The test set consists of 50 postings

and the previous data consists of 100 postings previously annotated, as it is re-

quired for the experimental comparison with iCRF (Section 4.5.5). For the datasets

Cars and Cellphones multi-field web form interfaces and input data-rich text doc-

uments were both taken from TodaOferta.com auction website. Similarly to Cars

and Cellphones, for the Books datasets, we took input data-rich text documents

from TodaOferta.com, but, in order to evaluate how good iForm adapts to form

variations, we have taken the multi-field web form interfaces from distinct websites,

TodaOferta.com, IngentaConnect.com, Oupress.com and Netlibrary.com, composing

datasets Books 1 to 4, respectively. For the test in our experiments, we use real

offers submitted to TodaOferta.com and automatically fill the corresponding form.

In the case of Movie Reviews, we have built a web form and have taken real short

movie reviews collected from IMDb3 (Previous Submissions), and from Wikipedia

and Freebase (Test Submissions).

To evaluate the results of our experiments we have used the well-known metrics

precision, recall and f-measure. We apply these metrics to evaluate the quality of

filling a single field and a whole form submission.

In the case of text boxes, we calculate precision, recall and f-measure at field

level as follows. Let Ai be the set of all tokens (words) from the input text that

should be used for filling a given field i in the form. Let Si be the set of all tokens

from the input text that were used for filling in this field i by the automatic filling

method. We define precision (Pi), recall (Ri) and F-measure (Fi) as:

Pi =
|Bi ∩ Si|
|Si|

Ri =
|Bi ∩ Si|
|Bi|

Fi =
2(Ri.Pi)

(Ri + Pi)
(6.2)

2http://www.isi.edu/integration/RISE/
3http://www.imdb.com
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For pull-down lists, set Ai contains the item in the list of field i that should be

chosen and set Si contains the items that were chosen for field i. For check boxes,

Ai contains the correct boolean value for field i and Si contains the boolean value

that was set for field i.

Submission-level precision (recall and f-measure), i.e., the quality of a whole

submission, is calculated as the average of the values of each field used in this

submission, observing that there are submissions in which not all fields are used.

Prior to all experiments, we performed an evaluation of the sensibility of iForm with

respect to the threshold ε. Following, we tested our method with multi-typed web

forms for submissions of Short Movie Reviews, Car offers, Cellphone offers and

Book offers. Next, we evaluated, in turn, how the number and the coverage of the

previously submissions impacts on the performance of iForm.

Finally, experiments using a Jobs postings dataset were conducted for comparing

iForm with a solution previously proposed to interactively fill forms [40], which is

referred to as iCRF in our experiments. iCRF is a method for interactive form filling

based on CRF [45].

6.6.2 Varying ε

One important question in our method is to determine the value of the threshold ε.

Recall from Section 6.2 that we consider a segment Sab as a suitable value for a field

f if the score returned by our content-based features is above a threshold.

To study this parameter, we randomly selected 25 documents from each dataset

and submitted them to iForm varying the parameter ε from 0.1 to 0.9. The results

of the averaged submission-level f-measure achieved are shown in Figure 6.3, where

in the case of Books datasets, the curve in the graph corresponds to the average

results for Books 1 to 4.

We can see that the results may vary according to the domain, which suggests

that a training adjusting step could be useful to produce optimized results. Notice
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however, that quite good results were achieved when using ε = 0.2 in the samples

submitted. For the Jobs dataset, the best form-filling result was obtained with

ε = 0.5. This can be explained by the small number of documents that compose

the previous submissions, that requires a more restricted threshold. For all the

experiments in this chapter, we set the value 0.2 for ε, including experiments with

the Jobs dataset. We suggest the possibility of introducing a training step for future

work.
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Figure 6.3: Results obtained when varying ε.

6.6.3 Experiments with Multi-typed Web Forms

To evaluate iForm within typical different form-based interfaces from distinct web-

sites, we tested our method with submissions from Movie Reviews, Car offers, Cell-

phone offers and Book Offers.

We grouped the results by the type of each field, i.e., text box, check box or

drop-down list, according to their occurrence in each web form. The results are

presented in Table 6.2 by means of field-level and submission-level precision, recall

and F-measure.

As we can notice, iForm achieved high quality results in all datasets. In the case
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Domain Type of Field # Fields P R F

Movies
Text Box 4 0.74 0.69 0.71
Submission 0.73 0.67 0.69

Cars

Text Box 5 0.78 0.73 0.76
Check Box 30 0.79 0.79 0.79
Average 0.79 0.78 0.79
Submission 0.77 0.73 0.75

Cellphones

Text Box 2 0.89 0.69 0.78
Check Box 35 0.94 0.94 0.94
Average 0.94 0.93 0.93
Submission 0.96 0.94 0.95

Books 1

Text Box 4 0.88 0.67 0.76
Drop Down 1 0.96 0.96 0.96
Average 0.90 0.73 0.80
Submission 0.89 0.67 0.76

Books 2
Text Box 4 0.72 0.54 0.62
Submission 0.74 0.55 0.63

Books 3
Text Box 2 0.73 0.55 0.63
Submission 0.70 0.56 0.62

Books 4
Text Box 3 0.85 0.56 0.68
Submission 0.75 0.55 0.63

Table 6.2: Results for multi-typed web forms.

of car offers, as shown in Table 6.2 (Cars) the quality of the form filling task was

almost the same for the text box fields and the check box fields.

Much better results were obtained for the case of cellphone offers, in which the

F-measure average reached above 0.90, as shown in Table 6.2. As a consequence,

submission-level f-measure result for this dataset was 0.95, which means that on

average, more than 90% of each submission were correctly entered in the web form

interface.

A detailed inspection on the offers entered by users in this interface, revealed

that the values available on these offers are usually more uniform than the values

of car offers and movie reviews. This explains the excellent results obtained by

iForm and corroborates our claims regarding the frequent reuse of data-rich texts

for providing data to fill form-based interfaces on the web.

In the case of the movie dataset the inspection of the text inputs entered revealed

a large degree of ambiguity, since it is very common, for instance, to have actors
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that are directors and directors that are also actors. As well as this, movie titles

contain ordinary words that appear within reviews not necessarily composing the

title (e.g., “Bad Boys”) and each review itself sometimes presents more than one

movie title. In addition, names and titles that are entirely composed by terms not

known from previous submissions frequently appear. In such cases, the style features

play an important role. All these shortcomings make this dataset a real challenge.

Similar difficulties were found in the Books datasets. Despite this, iForm presented

good results. As shown in Table 6.2, precision levels are above 0.7 in all cases, and

submission-level f-measure results for these datasets are above 0.6.

6.6.4 Number of Previous Submissions

In this experiment we verify how the performance of our method behaves when the

number of previous submissions varies. The result of this experiment is presented in

Figure 6.4, in which for each dataset, we used an increasing number of submissions,

from 500 to 10000, and calculated the average submission-level f-measure resulting

from running the form filling process over each collection.

As it is shown in Figure 6.4, for the Movies and Books 1 datasets, the quality

achieved by iForm increases proportionally with the number of previous submissions.

The same behavior was observed for the other Books datasets. Their results are

presented in Figure 6.5.

In the cases of the Cars and Cellphones datasets, it is important to notice that

F-measure values stabilize at around 3000 previous submissions and remain the

same until 10000 submissions. This shows that our method does not require a large

number of previous submissions to reach a good quality of results. Besides, even

starting with a small number of submissions, iForm is able to help decrease the

human effort in the form filling task. Notice that the expected volume of previous

submissions in the application scenarios which motivated our work, i.e, sites such

as eBay and TodaOferta, is far higher than the number of previous submissions we
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Figure 6.4: Behavior of the form filling quality with the increasing of the previous
submissions.

simulated in this experiment.

6.6.5 Content Overlap

In this experiment we aim at studying how much iForm depends on the overlap

between the contents of the text inputs and the contents of the previous submissions,

i.e., the known values submitted to each field.

In our solution, we can characterize three different forms of content overlap: (1)

Value Overlap: the overlap between the set of complete values found in a given input

text and the set of previously known values; (2) Term Overlap: the overlap between

all terms on the input text and all terms composing the previously know values; (3)

Term-Value Overlap: the overlap between the terms in the input text that compose

values to be extracted and all terms composing the previously known values.
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Figure 6.5: Behavior of the form filling quality with the increasing of the previous
submissions with different Book forms.

To exemplify, consider the input text I = {“Brand New Honda Accord Hybrid”},

from which the values “Honda” and “Accord Hybrid” are to be extracted for fields

Make and Model, respectively. Suppose that the following values are known for

fields Make and Model: Make= {“Honda”, “Mercedes”} and Model= {“City”,“Civic

Hybrid”, “A310”}.

In this example, for input text I: (a) the value overlap is 1/2, since from the

two values to be extracted only one is known; (b) the term overlap is 2/5, since

from the five terms in the input text, only 2 are available in the known values; (c)

the term-value overlap is 2/3, since from the three terms composing values to be

extracted from I, only two are previously known.

In Figure 6.6 we present the quality results of experiment described in Sec-

tion 6.6.3 for datasets Movies, Cars and Cellphones and Books1, showing different

ranges of overlap, considering the three forms of overlap described above.
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Figure 6.6: Form filling quality on Cars, Cellphones, Movies and Books1 datasets
with different overlap ranges.

Figure 6.6(j) shows that for most of the inputs (36 out of 50) the value overlap

is not greater than 50%, and, despite that, the quality of the results in terms of

precision, recall and f-measure is close to the quality obtained with a larger value

overlap, 76% to 100%, observed on 3 inputs. This is in accordance with the results

presented in Figure 6.6(k), since most of the inputs have most of terms present in

the previous submissions.

Besides, the Movies datasets trends are similar to the ones in Books1. For the
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case of datasets Cars and Cellphones, notice that the term overlap is quite low in

all input texts. This is due to a large number of useless terms typically available on

such input text taken as whole. In these cases, however, useful terms appear within

values to be extracted from these input texts, yielding to the good quality results

achieved.

These results show an important property of our method: iForm does not rely on

a high coverage of values in the previous submissions, as long as these submissions

are representative from the domain.

6.6.6 Comparison with iCRF

Finally, we compare iForm and the interactive method proposed by Kristjansson

et al [40], which we name here as iCRF, for the task of extracting segments from

text inputs and filling a form. We took from the RISE Jobs collection a subset of

100 job postings already containing labels manually assigned to the segments to be

extracted. These job postings form an adequate training set for iCRF, since this

method requires examples of values to be extracted to appear within the context they

occur. Thus, we could not use the remaining 450 job postings from the collection,

for which extracted values are provided separately from the postings in which they

occur. From the same set of 100 documents, we took the labeled segments to

simulate submissions to the form-based interfaces for iForm. Notice that, unlike

iCRF, iForm does not require the annotated input for training.

Next, we tested both methods using a distinct set of 50 documents, whose ex-

traction outcome was available from RISE, allowing us to verify the results. These

results are reported in Table 6.3 in terms of field-level F-measure.

For the experiment with iCRF, we used a publicly available implementation of

CRF by Sunita Sarawagi and deployed the same features described in [45]. Overall,

these are standard features available on the public CRF implementation, e.g., dic-

tionary features, word score functions and transition features. Further, we consider
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that the forms are filled in an interactive process, with the previously filled forms

being corrected by a human and then being incorporated to the training set.

Field iForm iCRF Field iForm iCRF
Application 0.82 0.37 Platform 0.47 0.38
Area 0.18 0.23 Recruiter 0.44 0.22
City 0.70 0.65 Required Degree 0.31 0.59
Company 0.41 0.17 Salary 0.22 0.25
Country 0.77 0.87 State 0.85 0.81
Desired Degree 0.57 0.37 Title 0.72 0.49
Language 0.84 0.69

Table 6.3: Field-level f-measure

According to the results presented in Table 6.3, iForm had superior F-measure

levels in nine fields, while iCRF had significant superior F-measure levels in four

fields only, as indicated by boldface numbers. The lower quality obtained by iCRF

is explained by the fact that segments to be extracted from typical free text inputs,

such as jobs postings, may not appear in a regular context, which is an important

requirement for CRF-based methods. For the case of iForm, this context is less

important, since it relies on features related to the fields instead of relying on features

from the input texts. In addition, iForm was designed to conveniently exploit these

content-based features that from previous submissions that are related to fields. If

we consider each submission as whole, i.e., the submission-level quality, iCRF and

iForm achieved, respectively, 0.46 and 0.59. Recall that, as we have seen, for one

to apply iCRF to this problem, labor-intensive preparation of training data from a

representative sample of text inputs is required.
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Chapter 7

Conclusions and Future Work

In this chapter we present our conclusions and discuss directions for future work.

We also present a list of the publications produced during this PhD work .

7.1 Conclusions

In this work, we have proposed, implemented and evaluated an unsupervised ap-

proach for the problem of Information Extraction by Text Segmentation (IETS).

Our approach relies on knowledge bases to associate segments in the input string

with attributes of a given domain by using a very effective set content-based fea-

tures. The effectiveness of the content-based features is also exploited to directly

learn from test data structure-based features, with no previous human-driven train-

ing, a feature unique to our approach.

We have studied different aspects regarding our approach and compared it with

state-of-the-art IE methods. Results indicate that our approach performs quite well

when compared with such methods, even without any user intervention.

Based on our approach, we have produced a number of results to address the

IETS problem in a unsupervised fashion. Particularly, we have developed, imple-

mented and evaluated distinct IETS methods. For the case where the input unstruc-

tured records are explicitly delimited in the input text, we propose a method called

111
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ONDUX (On Demand Unsupervised Information Extraction) [20, 22, 59]. Unlike

previously proposed methods, ONDUX relies on a very effective set of content-based

features to bootstrap the learning of structure-based features. More specifically,

structure-based features are exploited to disambiguate the extraction of certain at-

tributes through a reinforcement step. The reinforcement step relies on sequencing

and positioning of attribute values directly learned on-demand from test data. This

assigns to ONDUX a high degree of flexibility and results in superior effectiveness.

We have also presented JUDIE a method for extracting semi-structured data

records in the form of continuous text (e.g., bibliographic citations, postal addresses,

classified ads, etc.) with no explicit delimiters between them. JUDIE is capable

of detecting the structure of each individual record being extracted without any

user assistance. This is accomplished by a novel Structure Discovery algorithm. We

have shown how to integrate this algorithm to the information extraction process

by means of successive refinement steps that alternate information extraction and

structure discovery. In comparison with other IETS methods, including ONDUX,

JUDIE faces a task considerably harder, that is, extracting information while si-

multaneously uncovering the underlying structure of the implicit records containing

it. In spite of that, it achieves results comparable to the state-of- the-art methods.

We have also exploited our proposed approach to create a method, called iForm,

that is able to deal with the Web form filling problem. iForm [69, 70] exploits val-

ues that were previously submitted to Web forms to learn content-based features.

iForm aims at extracting segments from a data-rich text given as input and asso-

ciating these segments with fields from a target Web form based on these features.

7.2 Future Work

The results we have achieved with the work here presented opens a number of

possible paths for future development. Among them we may cite the following.
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Generating Transductive Methods Using Domain Knowledge. An issue

we do not directly addressed in our work is how to better explore our approach to

create methods that are fully transductive, that is, that could learn content-based

features from the input text in addition, or as an alternative, to the use of previously

existing dataset. It would be interesting to investigate the possibility of generating

sequence models specialized in a given input and to verify if these models converge

to better extraction results.

Information Extraction from HTML pages. Another interesting adaptation

of our information extraction approach would be using it to extract information

available in HTML pages. Although there are several alternative approaches to deal

with this problem, they generally are too dependent on the regular use of HTML

markup patterns. With the proliferation of alternative frameworks for content for-

matting such as the use of style sheets, scripting, and new languages such as HTML5,

traditional extraction methods that rely on HTML markup can be severely affected.

As our approach does not depend on particular markup features, we believe that is

possible to use it to not only to extract information but also to identify structured

objects represented in HTML pages, such as product descriptions, recipes, etc.

Extraction Improvement Through User Feedback. As many other approaches

in the literature, our extraction approach is also subject to the occurrence of false

positives (i.e., data wrongly extracted) and false negatives (i.e., data that should be

extracted but that were not). We plan to incorporate some user feedback actions,

hoping to improve the quality of the extracted data in cases were it is needed. For

instance, we plan to use methods to identify possible extraction problems when the

features we use do not reach a certain confidence level regarding the estimated qual-

ity of the extraction results. In these cases, the user could be required to provide

high confident information that can be used as a feedback for the improvement of

the process.
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Structuring Keyword-Based Queries. A typical application of information ex-

traction methods is structuring queries expressed as a sequence of keywords, which

are common in search engines. The main goal here is to correctly assign attribute

names to terms provided in a keyword-based query [46, 52]. We believe that it is

possible to use our approach to address such a problem in an unsupervised fash-

ion, i.e.,with no user intervention. In fact, this work is currently been carried out,

focusing on the problem of product search.

7.3 Publications

In the following we list all publications produced during this PhD work. First we list

the publications that constitute the core of this thesis. Next, we list the publications

that are related to the information extraction problem we tackle here . Finally, we

also list all other publications in different areas of information and data management.

Thesis Core

1. Cortez, E., da Silva, A. S., , de Moura, E. S., and Laender, A. H. F. (2011).

Joint unsupervised structure discovery and information extraction. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of

Data, pages 541–552, Athens, Greece.

2. Porto, A., Cortez, E., da Silva, A. S., and de Moura, E. S. (2011). Unsuper-

vised information extraction with the ondux tool. In Simpósio Brasileiro de

Banco de Dados1.

3. Serra, E., Cortez, E., da Silva, A., and de Moura, E. (2011). On using

wikipedia to build knowledge bases for information extraction by text seg-

mentation. Journal of Information and Data Management, 2(3):259.

1Tool awarded as the Best Tool of the Conference
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4. Cortez, E., da Silva, A., Gonçalves, M., and de Moura, E. (2010). ONDUX:

On-Demand Unsupervised Learning for Information Extraction. In Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pages 807–818, Indianapolis, USA.

5. Cortez, E. and da Silva, A. S. (2010). Unsupervised strategies for information

extraction by text segmentation. In Proceedings of the SIGMOD PhD Work-

shop on Innovative Database Research, pages 49–54, Indianapolis, Indiana.

6. Toda, G., Cortez, E., da Silva, A. S., and de Moura, E. S. (2010). A probabilis-

tic approach for automatically filling form-based web interfaces. Proceedings

of the VLDB Endowment, 4(3):151–160.

7. Toda, G., Cortez, E., Mesquita, F., da Silva, A., Moura, E., and Neubert, M.

(2009). Automatically filling form-based web interfaces with free text inputs.

In Proceedings of the International Conference on World Wide Web, pages

1163–1164. ACM.

Publications Related to the Information Extraction Problem

8. Laender, A., Moro, M., Gonçalves, M., Davis Jr, C., da Silva, A., Silva, A.,

Bigonha, C., Dalip, D., Barbosa, E., Cortez, E., et al. (2011). Building a

research social network from an individual perspective. In Proceedings of the

International ACM/IEEE joint conference on Digital libraries, pages 427–428.

ACM.

9. Laender, A., Moro, M., Gonçalves, M., Davis Jr, C., da Silva, A., Silva, A.,

Bigonha, C., Dalip, D., Barbosa, E., Cortez, E., et al. (2011). Ciência brasil

- the brazilian portal of science and technology. In Integrated Seminar of

Software and Hardware (SEMISH).

10. Cortez, E., da Silva, A. S., Gonçalves, M. A., Mesquita, F., and de Moura,
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E. S. (2009). A flexible approach for extracting metadata from bibliographic

citations. Journal of the American Society for Information Science and Tech-

nology, 60:1144–1158.

Other Publications

11. Cortez, E., Rojas Herrera, M., da Silva, A., de Moura, E., and Neubert, M.

(2011b). Lightweight methods for large-scale product categorization. Journal

of the American Society for Information Science and Technology, 62(9):1839–

1848.

12. Evangelista, L., Cortez, E., da Silva, A., and Meira Jr, W. (2010). Adaptive

and flexible blocking for record linkage tasks. Journal of Information and

Data Management, 1(2):167.

13. Evangelista, L., Cortez, E., da Silva, A., and Meira Jr, W. (2009). Blocagem

adaptativa e flex́ıvel para o pareamento aproximado de registros. In Simpósio

Brasileiro de Banco de Dados2.

Tutorials

14. da Silva, A. and Cortez, E. (2012). Methods and techniques for information

extraction by text segmentation. In Proceedings of the Alberto Mendelzon In-

ternational Workshop on Foundations of Data Management. Invited Tutorial.

15. da Silva, A. and Cortez, E. (2011). Methods and techniques for information

extraction by text segmentation. In Simpósio Brasileiro de Banco de Dados.

Invited Tutorial.

2Paper awarded as the Best Paper of the Conference
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para o Preenchimento Automático de Formulários Web a Partir de Textos Ricos
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