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ABSTRACT
We propose a lightweight framework for data exchange that
is suitable for non-expert and casual users sharing data on
the Web or through peer-to-peer systems. Unlike previous
work, we consider a simplistic data model and schema for-
malism that are suitable for describing typical online data,
and propose algorithms for mapping such schemas as well
as for translating the corresponding instances. Our solution
requires minimal overhead and setup costs compared to ex-
isting data exchange systems, making it very attractive in
the Web data exchange setting. We report experimental re-
sults indicating that our method works well with real Web
data from various domains.

Categories and Subject Descriptors
H.2.5 [Information Systems]: Heterogeneous Databases

General Terms
Algorithms, Experimentation

Keywords
XML, data exchange, Web data management

1. INTRODUCTION
The past few years have witnessed a drastic increase in

the amount of data collections maintained and shared by
non-expert users through easy-to-use services on the Web or
peer-to-peer (P2P) data sharing systems [11, 15]. There are
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many such services available today, both on focused topics
(e.g., the Internet Book Database1 and the Recipe Tavern2),
as well as generic services (e.g., GoogleBase3 , FreeBase4, and
craigslits5). We refer to these data as “collections” because
they are not created nor maintained as traditional databases.
For instance, most of them are kept outside a DBMS, and are
accessed in rudimentary ways compared to what a declara-
tive query interface offers. Also, these collections are usually
stored as CSV (comma-separated-values) or XML files, al-
though some Web data sharing services allow users to store
their data in a relational format (e.g., DabbleDB6).

One defining characteristic of these data sharing services
is that they allow the users to organize their data in any way
they wish, while offering a set of pre-defined (and sometimes
customizable) schemas from different application domains.
This flexibility lowers the entry-level cost for one to share
data, but naturally leads to a myriad of schemas describing
very similar application domains, making it harder for one
to integrate them afterwards [13]. Nevertheless, given the
abundance of data collections available, it would be highly
desirable to be able to integrate them with the same ease
with which one can define data collections.

We consider the problem of exchanging data between such
collections, that is, translating data from one source collec-
tion into data that conforms to the schema of a target col-
lection, in a way that is suitable for non-expert users. To
illustrate the problem, consider the example in Figure 1,
showing data collections about music in XML and CSV for-
mats. Note that they use distinct labels for the same kind
of data, as well as different structure. Moreover, in gen-
eral, schema information is implicit, i.e., a carefully designed
DTD or XML Schema may not always be available. Fur-
thermore, often the input data cannot be fully embedded
in the target data collection; that is, only a part of the in-
put schema can be matched correctly to the target schema.
For instance, consider exchanging data from the collection
in Figure 1(b) into the collection in Figure 1(a). Observe
that Artist and Album match name and title, respectively,
while Instrument and Price have no counterpart in the tar-
get collection.

The data exchange problem consists in, given data struc-
tured under a source schema, restructure and translate it

1http://www.ibookdb.net
2http://www.recipetavern.com
3http://base.google.com
4http://www.freebase.com
5http://www.craigslist.org
6http://dabbledb.com/

25



(a) XML format.

(b) CSV format.

Figure 1: Example data collections.

to a target schema [7]. While this problem has attracted
considerable attention recently, the bulk of this work con-
siders a very different setting in which the data are kept
in databases and tools are used to help translating the data
from one database into another. This approach is completely
unrealistic in the setting we consider here. First of all, non-
expert users do not have the skills nor the resources to set
up databases and use mapping tools for finding the corre-
spondences between them. Also, given the large number of
data collections and the high heterogeneity among them, the
effort invested in using a standard database solution would
be unacceptable. Finally, most of the exchanges in this set-
ting move only small portions of a data collection at a time,
and it is quite possible that two peers may exchange data
once and never again. Therefore, the traditional solution to
the data exchange problem requires considerable investment
and effort to be practical in our setting.

Outline and contributions. In this paper we propose a
lightweight data exchange framework tailored for non-expert
and casual users sharing semi-structured data on the Web
or in P2P systems. More specifically, we discuss a simple
generic hierarchical data model as well as a schema formal-
ism that capture essential features of XML and tabular data
(Section 3), and present the data exchange problem in those
terms. We then discuss our Data Fitting algorithm, which
restructures instances of our data model according to a tar-
get schema, without any user intervention (Section 4). We
present experimental results on real Web data from several
domains showing that our approach is very promising (Sec-
tion 5). Finally, we conclude in Section 6.

2. RELATED WORK
The data exchange problem consists in, given data struc-

tured under a source schema, restructure and translate it to
a target schema. Fagin et al. [7] laid down the foundations
of the data exchange problem; in particular, they studied
different semantics for data exchange and their complex-
ity. Fuxman et al. [8] study the problem in the context of
two peers sharing data; they consider the case when peers

specify what data they are willing to receive from others.
Arenas and Libkin [1] consider the exchange of XML data
where the source and target schemas are XML DTDs. These
works have laid out the theoretical underpinnings of the data
exchange problem, focusing mostly on complexity results.

There has been considerable work on matching schemas
(i.e., finding the best mapping between elements in the source
and target schemas); Rahm and Bernstein provide a thor-
ough survey [18]. Cupid [12] and Similarity Flooding [14]
exploit schema information, including the labels of schema
elements, to derive mappings. Our experiments show that
this approach alone does not work well in our setting. Other
methods exploit the actual data values to derive associations
between schema elements [4]. As we show later, combining
schema and value information yields very acceptable results
in our setting.

There has been work on actually translating the data once
the schemas are matched. The Clio tool (see [17] and refer-
ences therein) is a system that generates such mappings in
several languages, converting between XML and relational
data seamlessly. Unlike Clio, which requires considerable
setup investment and user intervention, our solution is tar-
geted to non-expert and casual users who may not have the
expertise nor the time to define and carefully debug map-
pings. Thus, we focus on a simpler data model and con-
straint language than what is handled in Clio and other
similar tools.

3. FRAMEWORK
In this section we discuss the data exchange problem in

light of a simple, generic data model and schema formalism
which are rich enough for the setting we consider in this
paper. We show how to convert XML data into instances
of our data model and vice-versa; we also relate our schema
formalism to Document Type Definitions (DTDs) [3]. We
focus on XML because it is the preferred encoding format
for exchanging data on the Web. Moreover, it is expressive
enough to represent other forms of data as well, such as
tabular data (i.e., a spreadsheet) and relational data.

3.1 Data Model
We consider a generic tree data model called FDM , with

two kinds of nodes for representing entities and their at-
tributes. Intuitively, entities represent real world objects
while attributes describe those entities. As usual, attributes
can only assume atomic values from a given domain.

An instance of the FDM data model is a labeled tree with
two kinds of nodes for representing entities and attributes,
respectively, and a distinguished entity node called the root
of the instance. Only attribute nodes have a value, which
is a literal of a given domain (i.e., strings, numbers, dates,
etc.). Figure 2 shows a document with the artist entity
Norah Jones, and one of he CDs, Not Too Late, which in
turn has two songs.

Context. The context of an entity e in an instance I is de-
fined by the sequence of entity labels spelled out in the path
from the root of I to e. The context of an attribute is the
same of the entity where that attribute is defined. For exam-
ple, the context of the song entities in Figure 2 is artist.CD.

3.2 FDM Schema Graphs
We use a simple schema formalism, similar in nature to

DataGuides [10], to describe the attributes of different en-
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Figure 2: Example of an entity. Entities are repre-
sented by round rectangles while attributes are tex-
tual nodes stemming out of entities; attribute values
are shown in italics.

Figure 3: An FDM schema. Boxes represent entity
types, while ovals represent attributes. The arrows
indicate the attributes of the entities and the way
they can be nested. Hollow arrows indicate optional
attributes.

(a) DTD Graph. (b) FDM Schema.

Figure 4: Example DTD Graph and corresponding
FDM schema.

tities and the ways in which these entities can be nested in
one another. We assume that an entity label and a context
defines a type. That is, we assume that two entities with
the same label appearing in the same context must have the
same attributes.

An FDM schema is a tree G = (V, E, r) in which V cor-
respond to entity types and attribute names; r is an entity
defining the root of V and E is the set of edges between
nodes in E. An edge from entity e1 into entity e2 in a
schema graph indicates that: e2 is a sub-entity of e1; an in-
stance of e1 may be associated with zero or more instances
of e2. Figure 3 shows an FDM schema for the instance in
Figure 2.

Converting DTDs into FDM schemas. We abstract a DTD
into an FDM schema as follows. Recall that the DTD
graph [20] of a DTD is a graph in which vertices correspond
to element tags in the DTD and an edge x → y is defined iff
the DTD allows elements of tag y to appear in the content
of elements of tag x; moreover, an edge x → y is labeled
with a ?, *, or + if y is optional in x, can occur zero or more
times in x, or at least once in x, respectively. For simplic-
ity, we replace all + edges by * edges. The root of the DTD
graph is the element tag of the root element in the document
(specified by the DOCTYPE clause). Given a DTD graph G,
an FDM schema S is produced as follows. Intuitively, leaf
nodes in G will be mapped into attributes in S, while the
root of G as well as its inner nodes on which the incident
edge is labeled with * are mapped into entities. Inner nodes
in which the incident edge is not labeled with * are inlined;
that is, their labels are used as prefixes of the entities or
attributes that appear below them in G. For instance, the
music node in the DTD graph of Figure 4(a) is inlined in
the FDM Schema (Figure 4(b)). Finally, leaf nodes in G in
which the incident edge is labeled * are modeled as entities
with a homonymous attribute.

More precisely, we create an entity type in S for the root
node of G, and for every node in G in which there is an
incident edge labeled with *. If x is a leaf node in G that
is mapped into an entity e1 in S, we add an attribute to e1

with the same label x. Let x and y are distinct nodes in G
that are mapped into entities e1 and e2, respectively, in S
such that: x is an ancestor of y, and there is no other node
in the path x � y that is mapped into an entity in S. We
add an edge e1 → e2 to S and we use the labels of the nodes
between x and y as prefixes to the label of e2. Finally, every
leaf node in G that is not mapped yet becomes an attribute
of the entity corresponding to its closest node in G.

Note that FDM schemas are less expressive than XML
DTDs and relational schemas. In particular, our formalism
does not capture recursive DTDs easily. This simplification
is intentional. We argue that our framework is expressive
enough to capture the essence of the data exchange problem
in our setting, as those discussed in Section 1.

Converting between XML and FDM. Converting an XML
document into an instance of FDM is straightforward. The
conversion in the opposite direction is also not hard; all one
needs to do is expand the inlined elements accordingly. Note
that converting from XML into FDM and back is a lossy
process, as FDM is not an ordered model. However, if one
has an FDM instance I that conforms to a schema derived
from a DTD D (as discussed above), one can translate I
into a valid document w.r.t. D, by ordering the elements
accordingly.

4. DATA FITTING
We now describe the Data Fitting method for restructur-

ing an instance of FDM that conforms to a source schema
S into another one that conforms to a target schema T .
We start by discussing how to match attributes in S to at-
tributes in T , and then move to deriving a mapping between
them and translating instances of S according to T .

4.1 Attribute Matching
The first step in mapping FDM schemas is matching their

attributes. Let A and B be two attributes from a source
instance IS of schema S and a target instance IT of schema
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Figure 5: Combining similarity components: F is
the final similarity between two attributes, C and L
are the content and label similarity scores, respec-
tively. K and V and the keyword-based and value-
based similarity scores.

T , respectively. We measure the similarity between A and
B using two components: their content similarity (C (A,B))
and their label similarity (L(A,B)). The content similarity
estimates to which extent the values in the domain of A
overlap with the values in the domain of B, based on the
actual values present in the source and target instances. The
label similarity estimates how close the labels (within their
context) of A and B are to each other.

We model similarity scores as probabilities and use the for-
mal framework of Bayesian networks [16] to combine them
as follows (see Figure 5; ignore nodes K and V for the mo-
ment.). The final similarity between A and B, denoted by
F (A,B), depends on the content and label similarity be-
tween them. Moreover, we assume that C and L influence F
through a disjunctive operator or(·, ·), also known as Noisy-
OR-Gate [16]:

F (A,B) = or(C (A,B),L(A, B))

Informally, by using the disjunctive operator we assume that
either parent node (C and L) is likely to activate F (i.e., sig-
nificantly increase its final score). This disjunctive operator
is particularly useful when any individual factor is likely to
activate F alone, regardless of other factors [16]. In doing
so, we avoid having to fine-tune relative weights for individ-
ual factors, as shown in our experimental results (Section 5).
Formally, the disjuntive operator is defined as follows:

or(x, y) = 1 − ((1 − x) · (1 − y))

where x and y are probabilities.

4.1.1 Content similarity
We treat numeric and textual attributes differently when

computing the C score. For numeric attributes, we consider
a simple yet effective approach: we assume that the values in
the target attribute B follow a Gaussian distribution. The
similarity between A and B is defined as the mean value
of the probability density function for each value in A. We
normalize this function by the maximum probability density,
which is reached when a given value is equal to the mean.
Thus, we define the content score for numeric attributes as
follows:

C (A,B) =
1

|A|
X
v∈A

e
− v−μ

2σ2

where σ and μ are standard deviation and mean, respec-
tively, of the values of B.

Textual attributes, on the other hand, require more work.
As illustrated in Figure 5, the content similarity for textual
data type is computed combining the keyword-based (K)

and value-based (V ) similarity scores, i.e.,

C (A,B) = or(K(A, B), S(A, B))

Keyword-based similarity. To estimate the content simi-
larity between textual attributes A and B, we rely on com-
mon words shared by them. We assume that the content of
B is representative of the attribute domain; i.e., most of the
keywords in A can be found in B as well. (Note that the
inverse is not necessarily true; that is, the content similarity
may be asymmetric.) Intuitively, the keyword similarity of
A and B should be high if: the overlap of keywords in A
and B is high, and the keywords in A that occur in B are
typical values in B (see below). More precisely, we define:

K(A, B) =
1

2

 X
k∈A∩B

wk(A)

wmax(A)
+ 1 −

Y
k∈A∩B

1 − wk(B)

!
(1)

where wk(A) and wk(B) are the weight of keyword k rel-
ative to attribute A and B, respectively; and wmax(A) =P

wk(A)∀k ∈ A.
The first component of Equation 1 is a normalized sum

of weights of keywords that occur in A ∩ B. The maximum
similarity is given when A∩B = A, and the minimum when
A ∩ B = ∅. The weighting term wk(A) is computed by
the well-known TF-IDF weighting scheme, privileging high
overlap with keywords that are rare in the source instance
but common in values of A:

wk(A) = tf k(A) · log
„

1 +
NS

att(S, k)

«

where tf k(A) is the term-frequency of k among values of A,
NS is the total number of attributes in the source schema
S and att(S, k) is the number of attributes in the source
instance IS containing k. In other words, wk(A) will be
higher if k is frequent in values of A and does not appear
everywhere in the target instance IT .

The second component in Equation 1 combines the like-
lihood of each keyword in A being a typical keyword in B,
using the disjunctive operator. By using the disjunctive op-
erator, we mean that a single typical keyword can signifi-
cantly increase the final likelihood between A and B. We
say that a keyword is typical in B if it occurs in most values
of B and in no other target attribute. This concept is similar
to the TF-IDF scheme. However, in unlike with the tradi-
tional TF-IDF, the weighting term wk(B) returns a value in
[0, 1], which we model as a probability:

wk(B) =
log(val(B, k))

log(VB)
·
„

1 − log(att(T, k))

log(NT )

«

where val(B, k) returns the number of values of attribute
B where k occurs, VB is the total of values of B, att(T, k)
counts to attributes in IT containing k among its values and
NT is the total number of attributes in T .

Value-based similarity. While the keyword-based similar-
ity works well when there is little or no overlap between the
exact textual values of A and B, the value-based similarity
takes advantage of such overlap. Intuitively, the value-based
similarity between A and B is high if many of the values in
A are found in B. The contribution of each value in A ∩ B
to the final similarity is proportional to the number os val-
ues in A, i.e., 1/log(|A|), which is combined by a disjunctive
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operator. That is:

V (A,B) = 1 −
Y
v∈A

1 − ov(B)

log(|A|)

where ov(B) is 1 if value v occurs as value of B, or 0 other-
wise; and |A| is the number of values of A.

We consider two values as equal if they contain the same
keywords (i.e., we remove stop-words from them). In order
to speed up the computation, we represent each value by the
MD5 signature of its terms.

4.1.2 Label Similarity
We compute the label similarity L(A, B) between A and

B taking into account their context (recall Section 3). We
don’t compare labels directly; instead we use stemming and
some simple heuristics to extract the relevant keywords in
them. For instance, “running time”is represented by {“run”,
“time”}. We will call this set of keywords as the label descrip-
tor of the attribute.

We estimate the similarity between a pair of label de-
scriptors using the “soft” version of the cosine measure in
the vector space model, named soft TF-IDF [5]. Unlike the
traditional cosine measure, the soft TF-IDF relaxes the re-
quirement that terms must match exactly and yields better
results in our setting. The soft TF-IDF model also consid-
ers similar keywords by using a string matcher. In this way,
given two label keywords a and b, such that |a| ≤ |b|, we
define the string similarity as s(a, b) = |a|/|b| if a is prefix
or suffix of b, or 0 otherwise.

To compute the label similarity, let close(θ, A, B) be the
set of keyword pairs (a, b), where a ∈ A and b ∈ B, and
such that s(a, b) > θ and b = arg maxb′∈B s(a, b′); i.e., b
is a keyword in B with the highest similarity to a. More
precisely, we define

L(A, B) =

P
(a,b)∈close(θ,A,B)

w(a, A) · w(b, B) · s(a, b)

rP
a∈A

w(a,A)2 ·
rP

b∈B

w(b, B)2

where w(a, A) and w(b, B) is the weight of label keywords a
and b regarding to attributes A and B, respectively.

We take into account two factors to compute the weight
of a keyword: (1) the level of keyword in the path from the
root entity to the attribute and (2) how rare is the keyword
among the attributes in schema. Intuitively, a keyword of
lower level (e.g. in attribute label) better describes an at-
tribute than a keyword of higher level (e.g. in the root entity
label). In addition, a label occurring in a single attribute is
more specific than a label occurring in several attributes.
More formally, we define:

w(a, A) = level(a,A) · log(IDFa)

where IDFa is the inverse of the fraction of attribute label
descriptors in the underlying schema that contain a.

4.2 Finding Mappings
Once we define a similarity measure for pairs of attributes,

the next step is to find those pairs of attributes that do in
fact match. We say that attributes A and B match when
their similarity F (A, B) is higher than a given threshold (we
use 0.5 in this work). From a pairwise computation, we
build an attribute multimapping [14] M that is a relation
associating each attribute in S to all those that match it in

Figure 6: Pairwise attribute mappings.

T . We consider only those pairs of attributes of compati-
ble datatypes. Also, for textual attributes, we require that
their length be compatible. Intuitively, this avoids matching
an attribute with movie reviews with another with movies
titles (even though their datatypes are the same and they
share common values, as movie titles are likely to appear
in reviews). Thus, considering a textual attribute X, let

X̂ be the distribution of lengths of values in X, E(X̂) be

the mean value of X̂ and std(X̂) be the standard devia-

tion of X̂ . We keep a mapping from A into B if the dif-
ference between the mean values of Â and B̂ is within one
standard deviation of B̂. More precisely, we require that

|E(Â) − E(B̂)| ≤ max(std(B̂), ε), where ε is a tolerance
threshold (in our tests we found that ε = 1.5 works well in
practice).

Given this attribute multimapping M, we can move to
mapping entities. To accomplish this, we first generate an
entity multimapping M′ from M in which entities E1 ∈ S
and E2 ∈ T are mapped if an attribute of E1 is mapped
to an attribute of E2 in M. For instance, in Figure 6, the
entity artist is mapped to album, since there is an attribute
match between them, namely: name → artist.

We compute the similarity between entities E1 and E2 by
using the disjoint operator over the set of mapped attribute
pairs between E1 and E2, denoted P(E1, E2):

F ′(E1, E2) = 1 −
Y

(A,B)∈P(E1,E2)

1 − F (A,B) (2)

where A and B are attributes belonging to E1 and E2, re-
spectively, and F (A, B) is as before.

4.2.1 Mapping conflicts
It is possible that M′ leads to introducing redundant

data in the target instance. To see this, consider Figure 6,
which dictates that the artist, CD and genre information are
merged together into a single album entity. As the target
schema does not allow more than one style attribute per al-
bum, the values of artist and title must be duplicated for
every CD in the source instance that has more than one
genre. Now consider mapping the track entities: note that
we must also repeat all tracks as sub-entities for each dupli-
cate album, which leads to high redundancy. This happens
because there are two entities that are not nested in one
other in the source schema (song and genre) but whose cor-
responding entities in the target schema are nested (album
and track). In this case, we say that the pairs of attributes
are in conflict (e.g., in Figure 6, a has a conflict with both b
and c).
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Given an entity multimapping M′, we obtain an entity
mapping μ′ by removing from M′ the conflicting pairs that
contribute the least to the aggregate similarity score between
S and T . As it turns out, this is an NP-complete optimiza-
tion problem. To see this, recall the problem of finding a
minimum-weight vertex cover [9] in a graph G = (V, E),
where vertices are associated with positive weights. The
problem consists of finding a cover for V (i.e., VC ⊆ V such
that all edges in E incide on a vertex in VC) whose total
weight is minimal. This is equivalent to finding the set of
conflicting pairs with minimal aggregate score in a setting
where pairs in M′ correspond to vertices in V and conflicts
correspond to edges in E. We use a simple greedy heuristic
that works as follows. In each round, we rank all pairs in
M′ by comparing their individual score given by F ′ (recall
Equation 2) against the sum of the scores of those that con-
flict with them, removing the lowest ranked pair. We repeat
this until no conflicts are left.

4.2.2 The final attribute mapping
We are now ready to discuss how we arrive at the final

attribute mapping μ that associates attributes in S into at-
tributes in T . Note that, unlike M, μ is a function. More-
over, as customary [18], we require μ to be injective; that
is, each attribute in S is mapped to at most one attribute
in T , and vice-versa. We obtain μ from M and μ′ as fol-
lows. Given matched attributes A and B in M and their
respective entities E1 and E2 in μ′, we multiply the attribute
similarity F (A,B) by the entity similarity F ′(E1, E2). Here,
the entity similarity acts as a structural score, by privileg-
ing attribute mappings between high scored pair of entities.
Note that if E1 and E2 are not in μ′ then attribute pair A
and B is not considered. Finally, we use the best filter algo-
rithm [14] to produce μ. That is, we chose the best available
candidate pairs from M until all attributes are mapped.

4.3 Translating instances
Once a mapping μ : S → T is defined, the last step of the

Data Fitting process is to restructure the source instance IS

by applying the transformations implied by μ. This does
not entail only relabeling but may also involve structural
changes. For instance, recall that in Figure 6 genres are de-
scendants of CDs in the source instance, while in the target
both entities are merged together into a single one.

This process is similar to the content creation and struc-
turing/tagging steps for publishing relational data of Shan-
mugasundaram et al. [19]. In particular, we adapted their
path outer union and hash-based tagger techniques. We start
by extracting the content of semantically related attributes
in IS by flattening it into a relation. This provides an inter-
mediary representation of the data, where there is no par-
ticular nesting, which can be grouped and nested according
to any other schema.

We flatten IS into a relation R(B1, B2, . . . , Bn), where
each Bi is an attribute in T . We traverse IS and, for each
attribute ai in entity Ei, we add a tuple to R containing the
values of all matched attributes in any of entity in the path
from the root of IS to Ei. Next, we tag and re-structure the
tuples in R in order to generate instances I1, . . . , Im, each
corresponding to a tuple in R and conforming to the target
schema T , as follows. Let T ′

i be a sub-tree of T containing
the entities presenting at least an attribute defined in ri ∈
R. We create entities and attributes (with their values as
defined in ri) in Ij according to T ′

i , including attributes that
are required in T but undefined in ri. To avoid generating

duplicate entities, we keep track of which entities have been
mapped in a hash table in memory.

Correct translations of instances of an FDM model must
preserve ancestor-descendant relationships between source
entities and sibling relationships between source attributes
(and thus preserve the semantics of the source instance).
Note that, because we remove conflicts (i.e., disallow non-
nested entities in the source to be nested in the target, as
discussed in Section 4.2.1), and because we require that two
source attributes connected through a path of entities to be
also connected through a path of target entities in a gener-
ated instance (if permitted by the target schema), our trans-
lation algorithm fulfills such a requirement. Finally, observe
that given μ, there is a unique (thus, unambiguous) way of
re-structuring source instances. This is because our simplis-
tic data model relates entities through nesting only. (See
[17] for a discussion on more powerful, potentially ambigu-
ous mapping semantics.)

5. EXPERIMENTS
We now present an experimental evaluation of our Data

Fitting method carried out with real Web data. The ex-
perimental data was acquired from popular sites from four
domains: movies, music, books and academic articles. For
each domain, we chose representative websites and extracted
data from them. Table 1 describes the data collections we
use in this work, while Table 2 presents the sites we used to
obtain them. All data used in our experiments is available
at http://www.ucalgary.ca/~denilson/fledex.

Source Collection Target Collection
Domain

Entities Attr. Entities Attr.
Overlap

Movies 774 77 8,914 19 10
Music 714 40 10,000 4 4
Books 789 5 1,211 19 4

Articles 1,630 6 8,000 13 4

Table 1: Data collections used in the experiments.
The Overlap column indicates the number of perfect
matches between attributes in the source and target
collections.

Domain Source collections Target collections
Movies movies.yahoo.com imdb.com
Music pandora.com&itunes.com musicbrainz.com
Books books.google.com dblp.uni-trier.de

Articles sigmod.org/record dblp.uni-trier.de

Table 2: Sites used in the experiments.

We use inverted file indices [2] to speed up the search for
keywords or value signatures within the instances. In our ex-
periments, the time for building such indices was the clearly
dominant cost, while the Data Fitting processing consis-
tently took hundreds of milliseconds for each input. Fur-
thermore, our greedy heuristic for solving the mapping con-
flicts, as described in Section 4.2.1, uses a Fibonacci heap [6]
to remove the vertex with minimum score. Our implemen-
tation was done in Perl, and all experiments were run on a
standard desktop machine (Pentium Core 2 Duo 2.13 GHz,
2 GB RAM).

As our main goal is to produce good mappings, we as-
sess the accuracy of our method using the F-measure met-
ric, which combines precision and recall and is commonly

30



Movies Music Books Articles
0

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

 

 

combined content keywords values labels

Figure 7: Accuracy of individual similarity measures
across domains.

used in Information Retrieval experiments [2]. To do that,
we manually inspected all data collections and defined the
correct mappings between attributes and entities on a best
effort basis. For instance, consider the combined plot for
Movies in Figure 5, whose F-measure is 0.94 (0.97 of preci-
sion and 0.92 of recall). This means that, on average, our
method chose less than one wrong pair (false positive) and
missed less than one correct pair (false negative) in the final
mapping, in the 50 runs of that experiment.

We now study the effectiveness of our Data Fitting ap-
proach with the different similarity measures discussed in
Section 4 (recall Figure 5). For increased readability, we re-
fer to the F , C, K, V and L scores as combined, content,
keywords, values and labels in this section. Note that the K
score (keywords) accounts for numeric similarity as well, as
opposed to V (values).

Effectiveness of the combined Data Fitting score. Fig-
ure 7 shows the average matching accuracy for different sim-
ilarity measures. For each domain, we pick 50 samples of 10
“main” entities with their sub-entities as well (e.g., for the
Movies domain with pick a movie with its actors, directors,
etc.), and use our Data Fitting method with different simi-
larity measures. As the graph shows, the combined method
we proposed (recall Section 4.1) outperforms all individual
similarity measures; this is particularly evident for the most
complex domains in our tests: Movies and Music.

Impact of source instance size. We use the Movies data
collections in this experiment. Figure 8(a) compares the ef-
fectiveness of the Data Fitting method with varying sizes of
the source instance; each plot shows the average accuracy
of 20 runs, each with a different sample from the source
movies collection. Note that the combined method again
outperforms the others, particularly for smaller source in-
stances (i.e., when exchanging fewer entities). The drop in
performance of the labels approach is due to the fact that
more optional attributes are present in larger samples.

Impact of the target instance size. Figure 8(b) shows how
the F-scores of the combined similarity method vary as a
function of the number of entities in the target data col-
lection. Each plot shows the average accuracy of 5 runs,
each with a different subset of the target collection in Ta-
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Figure 8: Accuracy results.

ble 1. In each run we use 20 samples from the corresponding
source data collection, with 10“main”entities each. Observe
that the Data Fitting method performs very well regardless
of collection size in simple collections (Articles and Books),
which are likely to occur on the Web. For the more com-
plex collections, as expected, the accuracy of the method
improves as more entities are kept in the target collection.

Resilience to noise. Figure 8(c) shows the impact of spu-
rious attributes in the source instance on the accuracy of
our method, using the Movies data collections. Each plot is
the average accuracy of 20 runs, each with 10 movies. We
start with only those attributes that have a perfect match
in the target data collection, and progressively add other
attributes from the collection (with real data from the Web
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source) that have no match in the target collection. As one
can see, the combined similarity suffers the least relative drop
in accuracy of all measures, remaining almost perfect even
when only 1/3 of the attributes in the source instance have
a match in the target instance (recall from Table 1 that only
10 attributes match in the Movies data collections).

6. CONCLUSION
This paper introduced a lightweight and flexible frame-

work for exchanging data on the Web or through P2P sys-
tems. Unlike previous solutions to the problem, our ap-
proach does not require the data to be stored in database
systems, nor the use of special-purpose schema mapping
tools. Thus, our method is particularly attractive to non-
expert and casual users lacking the expertise or resources for
setting up a complex data sharing environment. The data
model and schema formalism we use are simple yet powerful
enough for the setting considered. Finally, extensive experi-
mental results with real Web data showed that our approach
is effective and very promising.

There are several lines for future work. For instance,
sometimes one wants to exchange only small fragments of
a large entity, and to associate them with other existing en-
tities (e.g., a user adding a new CD to an existing artist).
Thus, it would be interesting to define a means for the user
to specify such update operations in a simple, intuitive way
(i.e., without having to write complex XQuery update state-
ments). Also, we would like to extend our model with sim-
ple constraints to enrich the data translation algorithm; in
particular, we believe that uniqueness and referential con-
straints should be enough for most practical settings. Fi-
nally, it would be interesting to study how a data exchange
tool based on a lightweight framework such as ours fares
against more sophisticated ones in the context of the Web.
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