
Joint Unsupervised Structure Discovery
and Information Extraction

Eli Cortez1 Daniel Oliveira1 Altigran S. da Silva1

Edleno S. de Moura1 Alberto H. F. Laender2

1Departamento de Ciência da Computação
Universidade Federal do Amazonas

Manaus, AM, Brazil
{eccv,dpo,alti,edleno}@dcc.ufam.edu.br

2Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Belo Horizonte - MG - Brazil
laender@dcc.ufmg.br

ABSTRACT
In this paper we present JUDIE (Joint Unsupervised Structure Dis-
covery and Information Extraction), a new method for automati-
cally extracting semi-structured data records in the form of con-
tinuous text (e.g., bibliographic citations, postal addresses, clas-
sified ads, etc.) and having no explicit delimiters between them.
While in state-of-the-art Information Extraction methods the struc-
ture of the data records is manually supplied the by user as a train-
ing step, JUDIE is capable of detecting the structure of each indi-
vidual record being extracted without any user assistance. This is
accomplished by a novel Structure Discovery algorithm that, given
a sequence of labels representing attributes assigned to potential
values, groups these labels into individual records by looking for
frequent patterns of label repetitions among the given sequence.
We also show how to integrate this algorithm in the information
extraction process by means of successive refinement steps that al-
ternate information extraction and structure discovery. Through an
extensively experimental evaluation with different datasets in dis-
tinct domains, we compare JUDIE with state-of-the-art information
extraction methods and conclude that, even without any user inter-
vention, it is able to achieve high quality results on the tasks of
discovering the structure of the records and extracting information
from them.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms, Performance, Experimentation

Keywords
Data Management, Information Extraction, Text Segmentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
Information Extraction by Text Segmentation (IETS) is a widely

applied technique to extract attribute values occurring in implicit
semistructured data records in the form of continuous text, such as
product descriptions, bibliographic citations, postal addresses, clas-
sified ads, etc. Current IETS methods rely on probabilistic graph-
based models [10, 17] in which nodes (states) represent attributes
and edges (transitions) represent the likely structures of the data
records. When properly trained, such models are able to accurately
predict a sequence of labels to be assigned to a sequence of text
segments corresponding to attribute values.

The learning process thus consists in capturing content-related
(or state) features, which characterize the domain of the attributes
(e.g., typical values, terms composing them, their format, etc.), and
structure-related (or transition) features (e.g., the positioning and
sequencing of attribute values, etc.), which characterize the struc-
ture of the records within the source text. In recent years, the effort
for training such models has been drastically reduced [1, 5, 14] or
even eliminated [8]. This is mostly due to the use of pre-existing
data sources such as reference tables, knowledge bases, etc., from
which content-related features can be automatically learned. These
features are, thus, source-independent. Structure-related features,
however, are source-dependent. In most cases, they can be learned
from user-provided training [1,14] or can be automatically induced
from the input texts in an on-demand way [8].

An important limitation in all previous IETS methods proposed
in the literature is that they rely on the user to implicitly provide
the likely structures of the records found on the source. This is true
even for the most recent methods that apply some form of unsu-
pervised learning [1, 5, 8, 14]. In most cases, the information on
the likely structures is provided in the training phase, through sam-
ple records labeled by a user [1, 14]. The generated model is then
able to extract information from one record at a time, what requires
the user to separate each individual record prior to providing them
as input for the extraction process. In other cases [5, 8], although
the structure-related features can be automatically learned from the
unlabeled input records, i.e., no explicit training is required, these
records must still be provided one by one.

This requirement implies into several shortcomings for situations
in which many implicit records are available in a single textual doc-
ument (e.g., a list of references in a research article, or products in
an inventory list) or a user is not available for separating the records
(e.g., an extractor coupled with a crawler or when processing a
stream of documents). Although straightforward methods could
be applied to simple cases in which the set of attributes is fixed

541

for all records, dealing with semi-structured records such as het-
erogeneous bibliographic references, classified adds, etc., is much
more complex. In the case of HTML pages, sometimes it is possi-
ble to automatically identify record boundaries and, thus, separate
records by using heuristics based on the tags and paths inside the
page [6, 7]. However, this is not the most common scenario on the
Web and other on-line sources of textual documents, such as social
networks or RSS messages.

1/2 cup butter 2 eggs 4 cups white sugar 1/2 cup milk 1 1/2 cups apple-
sauce 2 tablespoons dark rum 2 cups all-purpose flour 1/4 cup cocoa
powder 2 teaspoons baking soda ground cinnamon 1/8 teaspoon salt 1
cup raisins 6 chopped pecans 1/4 cup dark rum

Quantity Unit Ingredient
1/2 cup butter
2 eggs
4 cups white sugar

1/2 cup milk
1 1/2 cups applesauce

2 tablespoons dark rum
2 cups all-purpose flour

1/4 cup cocoa powder
2 teaspoons baking soda

ground cinnamon
1/8 teaspoon salt
1 cup raisins
6 chopped pecans

1/4 cup dark rum

Figure 1: Chocolate Cake recipe (top) and structured data ex-
tracted from it (bottom).

As an example, consider the Chocolate Cake recipe available in a
pure text message illustrated in Figure 1. To provide a proper input
to current IETS methods, a user would have to scan the message
and manually separate each record containing the specification of
an ingredient in the recipe. Notice the cases in which attributes
“Quantity” and “Unit” are missing in the input message. Auto-
matically processing several of such messages with current IETS
methods is unfeasible, even if they come from the same source.

In this paper we present JUDIE (Joint Unsupervised structure
Discovery and Information Extraction), a new method for IETS
that addresses the problem of automatically extracting several im-
plicit records and their attribute values from a single text input. Un-
like previous methods in the literature, ours is capable of detecting
the structure of each individual record being extracted without any
user intervention. The table in Figure 1 illustrates the output of our
method when the text on the top is given as input.

To uncover the structure of the input records, we use a novel
algorithm that, given a sequence of labels representing attribute
values, groups these labels into individual records by looking for
frequent patterns of label repetitions, or cycles, among the given
sequence. The Structure Discover (SD) algorithm is, thus, our first
contribution in this paper.

Our second contribution is the way we integrate this algorithm
in the information extraction process. This is accomplished by suc-
cessive refinement steps that alternate information extraction and
structure discovery. Following, we briefly describe how our method
executes this process.

Given an input text with a set of implicit data records in tex-
tual format, such as the one illustrated in Figure 1, the first step
of our method performs an initial labeling of the candidate val-
ues identified in this input with attribute names. As at this point
there is no information on the structure of the data records, we re-
sort only to content-related features for this labeling. Thus, this

step, called Structure-free Labeling, generates a sequence of labels
in which some candidate values may be missing or have received
a wrong label. Despite being imprecise, this sequence of labels
is accurate enough to allow the generation of an approximate de-
scription of the structure of the records in the input text (as demon-
strated in our experiments). This is accomplished in the second step
of our method, called Structure Sketching, by using the SD algo-
rithm. The output of this step is a set of labeled values grouped into
records that already bear a structure close to the correct one. Thus,
from these records it is possible to learn structure-related source-
dependent features. These features can now be used to revise the
Structure-free Labeling from the first step. This Structure-aware
Labeling is the third step of our method. As demonstrated by our
experiments, the results produced by this step are more precise than
those obtained by the Structure-free Labeling, since now content-
related and structure-related features are taken into consideration.
Our method then takes advantage of this more precise sequence of
labels to revise the structure of the records. This new sequence is
given as input to the SD algorithm. This is the fourth and final step
of our method. It is called Structure Refinement. We notice that all
of these steps are completely unsupervised.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes our method, while
Section 4 focuses on the features used by our method. Section 5
presents a detailed description of the Structure Discovery algo-
rithm. Section 6 reports the results of an empirical evaluation we
have performed with several sources and different domains. Fi-
nally, Section 7 presents conclusions and discusses future work.

2. RELATED WORK
Since the pioneering work of Soderland [19], the problem of ex-

tracting information from textual inputs containing implicit data
records has received considerable attention in the literature. This
problem is also known as Information Extraction by Text Segmen-
tation (IETS) and the most successful methods that deal with it rely
on machine learning techniques. In general, these methods are su-
pervised [10, 12, 13, 16], in the sense they require hand-labeled ex-
amples (training data) that are provided by an expert user. In or-
der to alleviate this need, unsupervised methods have been pro-
posed, for which training data is created from pre-existing data
sources [1, 5, 8, 14].

However, existing IETS methods do not address the problem of
automatically discovering the structure of implicit records. Usually,
they consider that such structure is either inferred from given ex-
amples or provided in advance by the user. In this sense, JUDIE is a
novel approach to automatically extracting several implicit records
and their attribute values from a single text input, since it per-
forms the extraction process while dealing with text inputs con-
taining data records with different structures. This task is not ac-
complished by any previously mentioned method. For instance,
ONDUX [8] and U-CRF [5] require direct user intervention to de-
limit each record within the text input as well as to define the struc-
ture of the records to be extracted. It is important to stress that the
record structure plays a very important role in this context, since
both U-CRF and ONDUX rely on structural features (positioning
and sequencing) to perform the extraction task.

The task of structure discovery was studied earlier in the litera-
ture. For example, in [6] and [7], the authors propose methods to
automatically find the structure of data records available in HTML
pages. Notice that our context and the input texts we deal with are
different from those treated by such methods. In our scenario, we
do not rely on the existence of HTML tags and record delimiters,
but only on the actual text that contains attribute values that might

542

compose a record. This provides more flexibility and robustness to
our method, since HTML markup is not always available and, even
when it is available, there is no guarantee that it is consistently
used, which is an important requirement for those methods. This
is particularly true on today’s Web in which the extensive use of
automatic layout generators and style-sheets may result in HTML
structures that are hard to handle automatically.

Indeed, the development of unsupervised methods for informa-
tion extraction is motivated by the increasing number of textual
documents that are made available on the Web, not only in HTML
format, but also as plain text. Thus, new information extraction
methods should not only work at Web scale, but also be free, or at
least highly independent, from any user assistance [4]. We believe
that our method, JUDIE, is a step towards fulfilling these require-
ments, since it does not require any specific information from the
user, neither to help discovering the structure of the target records,
nor to extract any piece of information included in the input text.

3. METHOD DESCRIPTION
In this section, we present our method by describing the main

four steps that comprise it. For that, we use a running example il-
lustrated in Figures 2(a) to (f). We consider that the unstructured
sequence of tokens corresponding to a list of items of a chocolate
cake recipe, shown in Figure 2(a), is given as input. Our method
then carries out the task of simultaneously extracting the compo-
nents of each item, i.e., Quantity (Q), Unity (U) and Ingredient (I),
and structuring them into records. The final output is illustrated in
Figure 2(f). The four steps that comprise our method are described
next.

3.1 Structure-free Labeling
Given an unstructured input text containing a set of implicit data

records in textual format, such as the one illustrated in Figure 2(a),
the first step of our method consists of initially labeling potential
values identified in this input with attribute names. As at this point
there is no information on the structure of the data records, we re-
sort only to content-related features for this labeling. Thus, we call
this step Structure-free Labeling.

All content-related features we use can be computed from a pre-
existing dataset. Consider an attribute A and let vA be a set of
typical values for this attribute. Then, for any segment of tokens
xi, . . . , xj from the input text, we can compute the value of a fea-
ture function gk(xi, . . . , xj , A). Intuitively, gk returns a real num-
ber that measures how well a hypothetical value formed by tokens
in the text segment xi, . . . , xj follows some property of the values
in the domain of A [17]. Obviously, the accuracy of such func-
tions often depends on how representative vA is with respect to the
values in the domain of A.

A very important aspect we exploit in our method is that it is
possible to compute gk for a segment of tokens xi, . . . , xj inde-
pendently of the input text in which it occurs. Thus, we say that gk

is domain-dependent, meaning that it is source-independent. Us-
ing domain-dependent features is a common trend in recent work
on information extraction. While in most cases they are used only
with textual attributes for computing string similarity [1,3,5,14] or
vocabulary affinity [8], here we investigate other possibilities.

In Section 4.1 we present the details of the content-related fea-
tures we use in our method. In the following, we describe how
these features are used to process the structure-free labeling.

From now on, we assume that all datasets are representative of
their attributes for the purpose of computing the features we use.
Also, for a given extraction task that involves attributes A1, . . . , An,
we say that datasets vA1 , . . . , vAn form a knowledge base KB.

Given a data source on a certain domain that includes values asso-
ciated with attributes, building such a knowledge base is a simple
process that consists in creating attribute-value pairs. Examples of
such data sources are relations, reference tables, ontologies, etc.

Processing the Structure-free Labeling
The targets of the structure-free labeling are sequences of tokens in
the input text that are likely to represent attribute values. We call
them candidate values and they are defined as follows.

Let I = t1, t2, . . . , tn be the set of tokens occurring in an input
text, such that no token contains white space. Consider a knowl-
edge base KB representing attributes A1, . . . , Am. A likely value
in I is the largest sequence of tokens s = ti, ti+1, . . . , ti+k (1 ≤
i ≤ n, k ≥ 0) from I that occurs as a value, or part of a value,
of some attribute Aj . In the input text I , all likely values and all
individual tokens that do not belong to any likely values are called
candidate values.

Figure 2(b) illustrates the candidate values found in the input text
of Figure 2(a). Notice that candidate values such as “raising flour”
and “Melted butter” can only be likely values. In the knowledge
base we use in our experiments for the Cooking Recipes domain,
values such as “Milk” and “Salt” are represented. Thus, the cor-
responding candidate values, in spite of being formed by a single
token, are also likely values. On the other hand, “Tbsp” is not
present in that knowledge base. Thus, it is an isolated token taken
as a candidate value.

Given a candidate value s, the decision on what label must be as-
signed to it takes into account different domain-dependent features
gk evaluated by feature functions of the form gk(s,A). To combine
these features, we assume that they represent the probability of the
candidate value s to occur as a value of the attribute A domain,
according to KB. If we assume that these features exploit different
properties of the attribute A domain, we can say they are indepen-
dent, what allows us to combine them by means of the Bayesian
disjunctive operator or, also known as Noisy-OR-Gate [15], which
is defined as:

or(p1, . . . , pn) = 1− ((1− p1)× . . .× (1− pn))

where each pi is a probability.
Thus, our final equation is:

`(s,A) = 1−
((
1− g1(s,A)

)
× . . .× (1− gn(s,A))

)
(1)

Informally, by using the disjunctive operator we assume that any
of the features is likely to determine the labeling (i.e., significantly
increase its final probability), regardless of other factors [15]. By
doing so, we avoid having to fine-tune relative weights for individ-
ual factors. As we shall see, this hypothesis is confirmed in our
experiments.

Function `(s,A) is computed for each candidate value s in the
input text for all attributes A of the same data type (i.e., text or
numeric). Thus, s is labeled with a label representing the attribute
that yielded the highest score according to this function.

The results of applying the structure-free labeling over the in-
put sequence of Figure 2(a) is illustrated in Figure 2(c), in which
capital letters represent labels assigned to candidate values, each
label representing an attribute as follows: Q for Quantity, U for
Unity and I for Ingredient. Notice that one of the candidate values
is marked with a “?”, meaning that no label could be assigned to
it. This occurs when no feature used in Equation 1 gives a value
greater than zero. This exemplifies one of the anticipated limita-
tions of the structure-free labeling, which we discuss below.

543

(a) 1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

(b) 1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

(c)
Q U I Q U ? I U I Q U I Q U I Q I I I

1/2 cup raising flour 2 level Tbsp Cocoa pinch Salt 1/4 cup Melted butter 1/2 cup Milk 1 Egg a little Vanilla

(d)
Q U I

1/2 cup raising flour
Q U ? I
2 level Tbsp Cocoa

U I
pinch Salt

Q U I
1/4 cup Melted butter

Q U I
1/2 cup Milk

Q I I I
1 Egg a little Vanilla

(e)
Q U I

1/2 cup raising flour
Q U U I
2 level Tbsp Cocoa

U I
pinch Salt

Q U I
1/4 cup Melted butter

Q U I
1/2 cup Milk

Q I Q I
1 Egg a little Vanilla

(f)
Q U I

1/2 cup raising flour
Q U U I
2 level Tbsp Cocoa

U I
pinch Salt

Q U I
1/4 cup Melted butter

Q U I
1/2 cup Milk

Q I
1 Egg

Q I
a little Vanilla

Figure 2: Running example with illustrations of the main steps that comprise our proposed method.

Limitations of the Structure-free Labeling
The use of very effective domain-dependent features yields a highly
precise label assignment in the structure-free labeling step. This
claim is supported by the results of extensive experiments we re-
port in this paper, involving more than 30 distinct attributes on five
distinct datasets.

In spite of that, using such features may represent a problem
in two important cases: (1) two (or more) attributes in the same
knowledge base are similar with respect to the property being eval-
uated by the feature function; (2) the property being evaluated is
under-represented within the known values of some attribute in the
knowledge base. In the first case, wrong labels can be assigned
to some segment, i.e., a label misassignment occurs. In the sec-
ond case, there is no support for “safely” assigning a label to that
segment, i.e., a label fault occurs.

In Figure 2(a) we exemplify these two cases by shadowing the
labels assigned to two of the candidate values. For the candidate
value “Tbsp”, the “?” indicates a label fault, while for the candidate
value “a little” the shadowed “I” indicates a label misassignment.
In this second case, the correct label would be “Q”.

For dealing with such cases, state-of-the-art information extrac-
tion methods rely on features that also consider the context in which
the segment being evaluated occurs within the input text. These fea-
tures are derived from the structure of the record used as training
data [1, 3, 5, 8, 10, 12, 14].

In our case, it is not possible to use these structure-related fea-
tures simply because our input text bears no structure. However,
imprecise as is, this sequence of labels generated by the structure-
free labeling is accurate enough to allow the generation of an ap-
proximate description of the structure of the records in the input
text. This is accomplished by the second step of our method, called
Structure Sketching, which we describe next.

3.2 Structure Sketching
The goal of the structure sketching step is to organize the la-

beled candidate values into records, effectively inducing a struc-
ture on the unstructured text input. As this step takes as input the
labels generated in the structure-free labeling step, in which impre-
cisions are expected, we consider this structure as a first approxi-
mation. The output of this step is a set of labeled values grouped
into records that already bear a structure close to the correct one.
In our method, this step plays an important role: with the structure
of the input text uncovered, we can evaluate structural features and
improve the initial labeling from the first step.

The structure sketching step uses a novel algorithm called Struc-
ture Discover (SD), which is one of the main contributions of this

paper. Let `1, `2, . . . , `n be a sequence of labels generated by the
structure-free labeling step, in which each label was assigned to
a candidate value. The SD algorithm is used to identify in this
sequence common subsequences of labels that are frequently re-
peated in the input text, which we call cycles. When a cycle that
covers all the input text is found, it can be used to group labels in
subsequences according to it. Each of these subsequences corre-
sponds to a record grouping values from distinct attributes. These
subsequences are called candidate records. We postpone a detailed
discussion of the SD algorithm to Section 5.

The result of applying the SD algorithm on the labeled sequence
of Figure 2(c) is shown in Figure 2(d). Notice that now candidate
values are grouped into distinct subsequences, that is, into candi-
date records. In this example, the cycle found is a simple sequence
of the attributes Quantity, Unit and Ingredient.

As this example illustrates, the algorithm is able to deal with ir-
regularities in the candidate records, such as missing or repeated
attribute values. Dealing with irregularities is important not only to
address natural irregularities often found in real cases, but also to
make the process robust to errors caused by the labeling process. In
this particular example, while a candidate value of attribute Quan-
tity is indeed missing in the third candidate record, the sequence of
three candidate values for attribute Ingredient in the last candidate
record is caused by an error in the structure-free labeling step.

As our experimental results indicate, in spite of these and oth-
ers irregularities (e.g., candidate records with distinct orderings of
attribute occurrence), the SD algorithm is able to discover a plausi-
ble structure for the input sequence of labels. Again, we refer the
reader to Section 5 for details on the SD algorithm.

With a plausible structure already uncovered by the SD algo-
rithm, it is now possible to compute structure-related features in
conjunction with content-related features to improve the initial la-
beling of the candidate values. This procedure is explained next.

3.3 Structure-aware Labeling
Consider a candidate record R = s1, . . . , sr , where each si(1 ≤

i ≤ r) is a candidate value. Also, consider an attribute A and let
`A be a label used for this attribute. Then, for any candidate value
si, we can compute the value of a feature function fk(si, A,R).
Function fk returns a real number that measures the likelihood of
a segment labeled `A to occur in the same place as si in R. Thus,
the value of fk is related to the structure of R.

Differently from the content-based features used so far, which
are only domain-dependent, structure-based features such as fk de-
pend on the particular organization of the candidate values within
the input text. This means that these features are source-dependent.

544

Like other information extraction methods (e.g., [5, 8, 14]), our
method uses two structure-related features. The first considers the
absolute position of the segment and the second considers its rela-
tive position, i.e., its occurrence between segment si−1 (if any, i.e.,
when i > 0) and segment si+1 (if any, i.e., when i < r).

For computing such features, it is common to build a graph model
that represents the likelihood of attribute transitions within the in-
put text (or any other input text from the same source). In this paper,
we adopt the same approach as in [8]. More specifically, we built
a probabilistic HMM-like graph model that we call PSM (Position-
ing and Sequencing Model). This model and the source-dependent
features computed based on it are described in Section 4.2.

With the structure-related features in hand, we can use them to
improve the initial structure-free labeling, as we describe next.

Processing the Structure-aware Labeling
Given a candidate value s, the decision on which label to assign to it
can now consider the structure-related features f j in addition to the
content-related features gk. As these features are also independent
from the content-related ones, since they depend on the source, we
again resort to the Bayesian Noisy-OR-Gate [15] to combine all
features as follows:

`(s,R,A) =1− (
(
1− g1(s,A)

)
× . . .× (1− gn(s,A))×(

1− f1(s,A,R)
)
× . . .× (1− fm(s,A,R)))

(2)

Function `(s,R,A) is computed for each candidate segment s of
all candidate records R in the input text for all attributes A of the
same data type (i.e., text or numeric). Thus, s is labeled with a label
representing the attribute that yielded the highest score according
to `.

The result of applying the structure-free labeling over the can-
didate records of Figure 2(d) is illustrated in Figure 2(e). Notice
that with the addition of the structure-related features, the candi-
date value “Tbsp” is now correctly labeled as U for Unity (this
term is indeed used in place of “tablespoon”). For the same reason,
candidate value “a little” is now correctly labeled as Q for Quantity.

As this example suggests, in general, combining structure-related
and content-related features produce more precise results than the
initial structure-free labeling. This trend is clearly indicated by our
experiments.

Our method then takes advantage of this more precise sequence
of labels to also revise the structure of the records. This new se-
quence is given as input to the SD algorithm. This is the fourth and
final step of our method.

3.4 Structure Refinement
This last step of our method simply consists in applying again the

SD algorithm. This time, however, it takes as input the labels gen-
erated by the structure-aware labeling. As the labeling produced
by this step is more precise, the result is a more accurate structure.
This is also indicated by our experimental results.

To illustrate it, notice that in Figure 2(f) the last candidate record
from Figure 2(g) has now been split in two different records by the
SD algorithm. Again, we refer the reader to Section 5 for details
on the SD algorithm.

4. FEATURES USED
In this section, we described the features we use in our method.

We begin by presenting the content-related, domain-dependent fea-
tures and then we present the structure-related, source-dependent
features.

4.1 Content-related Features

Attribute Vocabulary. These features exploit the common vo-
cabulary often shared by values of textual attributes (e.g., neigh-
borhood and street names, author names, recipe ingredients, etc.).
To capture this property, we resort to a function called AF (At-
tribute Frequency) [9], which estimates the similarity between a
given value and the set of values of an attribute. In our case, the
function AF is used to estimate the similarity between the content
of a candidate value s and the values of an attribute A represented
in the knowledge base KB. Function AF is defined as follows:

AF (s,A) =

∑
t∈T (A)∩T (s)

fitness(t, A)

|T (s)| (3)

In Equation 3, T (A) is the set of all terms found in the values of
attribute A represented in KB and T (s) is the set of terms found in
the candidate value s. The function fitness(t, A) evaluates how
typical a term t is among the values of attribute A. It is computed
as follows:

fitness(t, A) =
f(t, A)

N(t)
× f(t, A)

fmax(A)
(4)

where f(t, A) is the number of distinct values of A that contain
the term t, fmax(A) is the highest frequency of any term among
the values of A, and N(t) is the total number of occurrences of the
term t in all attributes represented in KB.

The first fraction in Equation 4 expresses the likelihood of term
t to be part of a value of A according to KB. This fraction is multi-
plied by a normalization factor in the second fraction. This prevents
attributes with many values in KB from dominating and is also use-
ful for making the term frequency comparable among all attributes.

We notice that although we could have used any other similar-
ity function, for instance, based on the vector space model, exper-
iments reported in the literature [9] have shown that AF is very
effective for dealing with small portions of texts such as the ones
typically found in candidate values.

It is also worth mentioning that we use inverted indexes over the
knowledge base to speed up the computation of this feature.

Attribute Value Range. For the case of numeric candidate val-
ues (e.g., page numbers, year, phone number, price, quantity, etc.)
textual similarity functions such as AF do not work properly. Thus,
for dealing with these candidate values a proper feature function is
needed. We assume, as proposed in [11], that the values of numeric
attributes follow a Gaussian distribution. Based on this assumption,
we measure the similarity between a numeric value vs present in a
candidate value s and the set of values vA of an attribute A in KB,
by evaluating how close vs is from the mean value of vA according
to its probability density function. For that, we use the function
NM (Numeric Matching), defined in Equation 5, normalized by the
maximum probability density of vA, which is reached when a given
value is equal to the average1.

NM(s,A) = e
−
vs − µ

2σ2 (5)

where σ and µ are, respectively, the standard deviation and the av-
erage of values in vA, and vs is the numeric value of s.

Notice that when vs is close to the average of values in vA,
NM(s,A) is close to 1. As vs assumes values far from the av-
erage, the similarity tends to zero.
1The maximum probability density of vA is 1/

√
2πσ2.

545

In many cases, numeric values in the input texts may include
special characters (e.g., prices and phone numbers). Thus, prior to
the application of the NM function, these characters are removed
and the remaining numbers are concatenated. We call this process
Normalization. For instance, the string “412-638-7273” is normal-
ized to form a numeric value 4126387273 that can be applied to
the function NM . Normalization is also performed over numeric
values that occur in KB.

Attribute Value Format. Another property we exploit as a con-
tent-related feature is the common format often used to represent
values of some attributes. Let vA be the set of values available for
an attribute A in KB. We automatically learn a sequence Markov
model mA that captures the format style of the values in vA. This
model is similar to the inner HMM used in [12] and is also applied
to capture the format of values as a state feature.

For that, we first tokenize each value of vA on white-spaces. Us-
ing a taxonomy proposed in [12], we encode this value as a se-
quence of symbol masks or simply masks. A mask is a character
class identifier, possibly followed by a quantifier. For example,
the value “Rivers inc.” of the Company attribute is encoded as
“[A-Z][a-z]+ [a-z]+.”, where mask [A-Z] represents a string that
starts with an uppercase letter, mask [a-z]+ represents a sequence
of one or more lowercase letters, etc. This process is repeated for
all known values of a given attribute.

Then, the model mA is generated based on these masks, so that
each node n corresponds to a mask that represents the values of vA.
An edge e between nodes ni and nj is built if ni is followed by nj

in the masks. Thus, each value in vA can be described by a path in
mA.

To express the likelihood of sequences of masks in the model,
we define the weight of an edge 〈nx, ny〉 as:

w(nx, ny) =
of pairs 〈nx, ny〉 in mA

of pairs 〈nx, nz〉,∀nz ∈ mA

Now, let s be a candidate value. We can encode s using the
symbol taxonomy as above. This results in a sequence of masks.
We evaluate how similar a candidate value s is to the values in vA
with respect to their formats by computing

format(s,A) =

∑
〈nx,ny〉∈path(s)

w(nx, ny)

|path(s)| (6)

where path(s) represents a path formed by the sequence of masks
generated for s in mA. Notice that, if no path matching for this
sequence is found in ma, format(s,A) = 0.

Intuitively, format(s,A) evaluates how likely are the sequences
of symbols forming a given candidate value s with respect to the se-
quences of symbols typically occurring as values of some attribute
A. By using such feature, we capture specific formatting properties
of URLs, e-mails, telephone numbers, etc.

Notice that the model mA is learned from the set of values vA
only. Thus, differently from [12], no manual training is needed.

4.2 Structure-related Features
State-of-the-art information extraction methods (e.g., [5, 8, 14])

usually use two types of structure-related feature. The first type
considers the absolute position of the text segment or token to be
evaluated and the second one considers its relative position, i.e.,
its occurrence between other segments or tokens in the input text.
For computing such features, it is common to build a graph model
that represents the likelihood of transitions within the input text (or
other input texts from the same source).

Figure 3: Example of a PSM

In most CRF-based methods, this model is built from training
data, which consists of a set of delimited records manually labeled
taken from the same input text [14]. In [5] and [8], the model is
built in an unsupervised way during the extraction process itself.
While in [5] a fixed order, learned from a sample, is assumed for
the attributes in the input text, in [8] the model is built using all
records available in the input text and no fixed order is assumed.
Thus, in our work we adopt the same approach as in [8]. More
specifically, we built a probabilistic HMM-like graph model called
PSM (Positioning and Sequencing Model).

In our case, a PSM consists of: (1) a set of states L = {begin, `1,
`2, . . . , `n, end} where each state `i corresponds to a label as-
signed to a candidate value in the structure-free labeling step; (2) a
matrix T that stores the probability of observing a transition from
state `i to state `j ; and (3) a matrix P that stores the probability of
observing a label `i in the set of candidate labels that occupies the
k-th position in a candidate record.

Matrix T , which stores the transition probabilities, is built using
the ratio of the number of transitions made from state `i to state `j
in a candidate record to the total number of transitions made from
state `i in all known candidate records. Thus, each element ti,j in
T is defined as:

ti,j =
of transitions from `i to `j

Total # of transitions out of `i
(7)

Matrix P , which stores the position probabilities, is built using
the ratio of the number of times a label `i is observed in position k
in a candidate record to the total number of labels observed in can-
didate values that occupy position k in all known candidate records.
Thus, each element pi,k in P is defined as:

pi,k =
of observations of `i in k

Total # of candidate values in k
(8)

By using Equations 7 and 8, matrices T and P are built to max-
imize the probabilities of the sequencing and the positioning ob-
served for the attribute values, according to the labeled blocks in the
output of the matching step. This follows the Maximum Likelihood
approach, commonly used for training graphical models [12, 17].

In practice, building matrices T and P involve performing a sin-
gle pass over the input text which, at this point, has already been
processed in the Structure Sketching step. Notice that candidate
values left unmatched are discarded when building these matrices.
Obviously, possible mismatched candidate values will be used to
build the PSM, generating spurious transitions. However, as the
number of mismatches resulting from the Structure-free Labeling
step is rather small, as demonstrated in our experiments, they do
not compromise the overall correctness of the model.

Figure 3 shows an example of the PSM built for an input text
with cooking recipes. As we can see, the graph represents not only
information on the sequencing of labels assigned to candidate val-
ues, but also on the positioning of candidate values in the input text.
For instance, in this example, input texts are more likely to begin
with blocks labeled Quantity than with blocks labeled Unit. Also,
there is a high probability that blocks labeled Ingredient occur af-
ter blocks labeled Unit.

546

Let sk be a candidate value in a candidate record R = . . . , sk, . . .
for which a label `i corresponding to an attribute Ai is to be as-
signed. Also, suppose that in R the candidate value next to sk is
labeled with `j corresponding to an attribute Aj . Then, using Equa-
tions 7 an 8, we can compute the two structure-related features we
consider, i.e, the sequencing feature and the positioning feature,
respectively as:

seq(sk, Ai, R) = ti,j and pos(sk, Ai, R) = pi,k (9)

5. THE SD ALGORITHM
In this section, we present a detailed description of the Structure

Discovery (SD) algorithm. As discussed in Section 3, this algo-
rithm plays an important role in our method: to uncover the struc-
ture of the implicit records from the input text. Besides the ultimate
goal of structuring the data extracted in the final step (Structure
Refinement), this algorithm is also used to induce structure-related
features that improve the quality of the extraction in an intermediate
step (Structure Sketching). In both steps, the SD algorithm takes as
input a sequence of labels assigned to candidate values generated in
the preceding steps and generates the structure of each record avail-
able in the input text. Following, we present preliminary concepts
related to the algorithm and describe its main steps.

The main intuition behind the algorithm is that it is possible to
identify patterns of sequences by looking for cycles into a graph
that models the ordering of labels in the labeled input text. This
graph, called Adjacency Graph, is defined below.

Adjacency Graph. Consider the sequence s1, s2, . . . , sn of can-
didate values in the input text, such that si is labeled with `i. The
ordered list L = 〈`1, `2, . . . , `n〉 is called an Adjacency List. An
Adjacency Graph is a digraph G = 〈V,E〉 in which V is the set of
all distinct labels in L, plus two special labels begin and end, and
E is the set of all pairs 〈`i, `j〉 in E for all i, j such that j = i+ 1
(1 ≤ i ≤ n− 1), plus two special edges 〈begin, `1〉 and 〈`n, end〉.

Title Conference Year Author Author Title Conference Year Author Title
Conference Year . . . Author Title Journal Issue Year Author Title Journal
Issue Year Author Author Journal Issue Year Title Year . . . Author Title
Conference Year Author Author Author Title Journal Issue Year

Figure 4: An Adjacency List and an Adjacency Graph for an
input text with bibliographic data.

Figure 4 illustrates portions of an Adjacency List built from a
sample unstructured text containing a number of implicit biblio-
graphic data records. This sample is a simplified version of a real
bibliographic data source such as CORA (a dataset we have used
in our experiments) represented by some of the attributes involved
(e.g., no volume or page information is represented). This sample,
however, exemplifies some of the problems faced when processing
real textual inputs.

Figure 4 also illustrates an Adjacency Graph built from this Ad-
jacency List. In this graph, nodes corresponding to attributes are
represented by ellipses identified by their respective labels in the
adjacency list. Nodes begin and end are considered as if they oc-
curred only once in this list, respectively, before and after the se-
quence of candidate values s1, . . . , sn. Their role is simply to

serve as references for the graph processing algorithms used by our
method.

The two long paths 〈Author,Title,Conference,Year〉 and 〈Author,
Title,Journal,Issue,Year〉 correspond, respectively, to publications
in conferences and journals. Notice, however, that some edges in-
dicate the occurrence of implicit records with missing attributes.
This is the case of the edge 〈Author,Journal〉 that indicates a miss-
ing value for Title. Also notice that 〈Year,Author〉 and 〈Year,Title〉
intuitively indicate records ending with an Year candidate value
leading to another record that may begin with either Author or Ti-
tle. Indeed, the first implicit record in the input text begins with a
Title candidate value.

The occurrence of implicit records with missing attributes is a
very common issue in most real cases. This situation occurs either
due to errors in the labeling process, specially in the case of the
structure-free labeling, or because the implicit record indeed has
no value for some attributes.

An important aspect the SD algorithm exploits in the adjacency
graph is the occurrence of cycles. A cycle is a sequence of adja-
cent nodes 〈`i, . . . , `i+k, `i〉. For convenience, we use the notation
[`i, . . . , `i+k], omitting the last node, which is always equal to the
first one.

The different configurations of implicit records, i.e., the set of at-
tributes composing them and the order in which their candidate val-
ues appear, can be detected by looking for cycles in the adjacency
graph. This is the case of cycles [Author,Title,Conference,Year],
[Author,Title,Journal,Issue,Year] and [Title,Conference,Year] in Fig-
ure 4.

Two important issues arise when using the adjacency graph to
analyze the possible record structures in the input text: (1) in which
order the labels in the cycle occur in the input text and (2) which
cycles correspond to actual implicit records in the input text. To
deal with both issues, we verify the correspondence between cycles
and the sequence of labels in the adjacency list. For the definitions
below, let G be an adjacency graph generated from an adjacency
list L.

Coincident Cycles. Two cycles ca and cb are said to be coincident,
meaning that they represent the same cycle in G, if they include
the same edges in the same order, but beginning and ending at a
different node in the cycle.

Cycle Instances and Viable Cycles. Let c = [`i, . . . , `i+k] be a
cycle in G. Any sequence `i, . . . , `i+k in L is said to be an instance
of c. The cycle c is said to be viable if there is at least one instance
of c in L.

Dominant Cycles. Let {c1, . . . , cn} be a set of coincident cycles.
The viable cycle ci for which the order of labels is the most frequent
in L is called the dominant cycle.

To exemplify these concepts, cycles ca = [Author,Title,Con-
ference,Year] and cb = [Title,Conference,Year,Author] are coinci-
dent in the adjacency graph of Figure 4. By looking into the adja-
cency list, we find that cb is the dominant cycle.

These concepts are used by the SD algorithm (Algorithm 1).
This algorithm works by first identifying all dominant cycles in
the adjacency graph and then processing each of these cycles in the
order of their sizes, the largest cycles being processed first. Notice
that nodes begin and end never participate in any cycle, since they
are both connected to the graph by a single edge.

In Lines 2 and 3, the Adjacency List and the Adjacency Graph
are created. Next, in Lines 4 and 5, the algorithm detects all single
cycles in the graph in order to remove all sequences of a same label

547

Algorithm 1: Structure Discovery Algorithm
input : I: input text with labeled candidate values
output: L: sequence of records that structure I
begin1

L← adjlist(I);2
G← adjgraph(L);3
foreach single cycle [`, `] in G do4

Replace all sequences `, . . . , ` by one single element `+ in L5

G← adjgraph(L);6
C ← dominant_cycles(G);7
i← 0;8
while C 6= ∅ do9

dci ← next(C);10
for each instance `1, . . . , `k of dci in L do11

Replace `1, . . . , `k by ri in L;12

i++;13

end14

from the adjacency list. Such sequences usually represent multi-
valued attributes (e.g., lists) that must be considered as a single
component in the records being identified. Thus, these sequences
are replaced by a single label `+ in the adjacency list.

In Line 6, a new Adjacency Graph is generated for reflecting the
removal of theses sequences. If we consider the graph in Figure 4,
the only effect will be the removal of the cycle involving Author.

In Line 7, the algorithm extracts all dominant cycles from G.
Next, these dominant cycles are used to structure their instances in
the input text. This is carried out by the loop in Lines 9 to 13. In
Line 10, the function next selects and removes the largest domi-
nant cycles from C and, in Lines 11 and 12, the instances of the
cycles in the adjacency list L are replaced by an indication that a
record has been formed with each of these instances. Thus, in our
algorithm, records are taken as cycle instances whose boundaries
are determined by matching cycles derived from the graph to the
adjacency list (Line 11).

We notice the importance of processing larger cycles first. Con-
sidering the graph in Figure 4, if the cycle cb = [Title,Conference,
Year] was processed before ca = [Author,Title,Conference,Year],
part of each instance of cb would be taken as a instance of ca. This
process continues while there are cycles unprocessed in C.

For the Adjacency List and the Adjacency Graph of Figure 4, the
sequence of dominant cycles that would be processed is the follow-
ing: [Author,Title,Journal,Issue,Year], [Author,Title,Conference,
Year], [Author,Journal,Issue,Year], [Title,Conference,Year] and
[Title,Year].

6. EXPERIMENTAL EVALUATION
In this section, we describe the experiments we have performed

to evaluate JUDIE using five distinct datasets. First, we describe
the experimental setup and the metrics used to assess JUDIE’s per-
formance. Then, we report on the quality of the extraction results
for each dataset.

6.1 Setup
The datasets employed in our experiments and the data sources

used to generate the knowledge bases for JUDIE are summarized
in Table 1. We notice that some of these datasets are the same em-
ployed in the evaluation of other information extraction methods.
We also recall that our method takes as input sets of records with-
out any explicit delimiters between them, as illustrated in Figure 1.

The dataset of the Cooking Recipes domain was previously used
in [2]. In order to build the knowledge base for this domain, we

have collected structured recipes from FreeBase2. For the Prod-
uct Offers domain, the dataset is formed by unstructured strings
containing lists of product offers from 25 Brazilian e-commerce
stores. Data for building the respective knowledge base has been
taken from Nhemu3, a Brazilian price comparison website. For the
Postal Adresses domain, both the dataset and the data source used
to build the knowledge base have been obtained from Bigbook, a
dataset available in the RISE repository4 and that has been previ-
ously used in [5] and [8].

For the Bibliography domain, the dataset is part of the Cora Col-
lection5 and is composed of a large diversity of bibliographic ci-
tations in distinct styles and formats. It includes citations to jour-
nal articles, conference papers, books, technical reports, etc. The
data source for building the knowledge base, PersonalBib, is also a
dataset of bibliographic citations that has been used in [14]. Finally,
for the Classified Ads domain we have taken the dataset previously
used in [8]. This dataset is composed of unstructured strings con-
taining ads from Brazilian newspaper websites. For building the
knowledge base, we have collected data from a database available
on the website of a major Brazilian newspaper.

For all performed experiments, we evaluated the extraction re-
sults for each individual attribute (attribute-level) and for each record
type as whole (record-level). As evaluation metrics, we have used
the well known precision, recall and F-measure as defined next.

Let Bi be a reference set and Si be a test set to be compared
with Bi. We define precision (Pi), recall (Ri) and F-measure (Fi)
respectively as:

Pi =
|Bi ∩ Si|

|Si|
, Ri =

|Bi ∩ Si|
|Bi|

and Fi =
2(Ri.Pi)

(Ri + Pi)

In order to present attribute-level results, we calculate precision,
recall and F-measure according to the above equations by consid-
ering Bi as the set of terms that compose the values of a given
attribute ai and Si the set of terms assigned to ai by our method.
Likewise, for record-level results, we calculate precision, recall and
F-measure by considering each record set Bi as the set of field val-
ues in a given structured record Ci and Si the set of field values
extracted for Ci by our method.

6.2 General Quality Results
In this section, we analyze the general quality of the extraction

task performed by JUDIE on the datasets described in Table 1. For
each domain, we have run the extraction task five times, each time
selecting different data samples for the data extraction task and for
building the respective knowledge bases. For all performed ex-
tractions, we report the average F-measure obtained for all runs.
We also notice that there is no intersection between the knowledge
bases and the corresponding datasets we use in our experiments.

Tables 2(a)–(e) present attribute-level F-measure values that as-
sess the extraction quality in each dataset. Column “C1” refers
to results obtained after the Structure-free Labeling and Structure
Sketching steps, which correspond to what we call Phase 1, and
Column “C2” refers to results obtained after the Structure-aware
Labeling and Structure Discovery steps, which correspond to what
we call Phase 2. Column “G” presents the gain in quality achieved
from Phase 1 to Phase 2.

Each of these columns assesses a distinct aspect of our method.
Results in column “C1” assess how well the content-related source-
independent features alone have been able to assign correct labels
2http://www.freebase.com
3http://www.nhemu.com
4http://www.isi.edu/info-agents/RISE
5http://www.cs.umass.edu/~mccallum/data

548

Domain Dataset Text Inputs Attributes Source Attributes Records
Cooking Recipes Recipes 500 3 FreeBase.com 3 100
Product Offers Products 10000 3 Nhemu.com 3 5000
Postal Addresses BigBook 2000 5 BigBook 5 2000
Bibliography CORA 500 3 to 7 PersonalBib 7 395
Classified Ads WebAds 500 5 to 18 Folha On-line 18 125

Table 1: Domains, datasets and KB data sources used in the experiments.

Phase 1 Phase 2
Attribute FI/NM FO C1 S+P C2 G %
Quantity 0.81 0.69 0.89 0.78 0.96 7.1
Unit 0.86 0.46 0.91 0.82 0.94 3.9
Ingredient 0.84 0.74 0.91 0.76 0.96 4.9
Average 0.84 0.63 0.90 0.79 0.95 5.3

(a) Recipes

Phase 1 Phase 2
Attribute FI/NM FO C1 S+P C2 G %
Name 0.77 0.37 0.85 0.69 0.90 5.3
Brand 0.74 0.52 0.83 0.71 0.92 10.5
Price 0.89 0.92 0.93 0.88 0.95 1.9
Average 0.80 0.60 0.87 0.76 0.92 5.8

(b) Products

Phase 1 Phase 2
Attribute FI/NM FO C1 S+P C2 G %
Name 0.79 0.48 0.94 0.63 0.97 2.6
Street 0.82 0.40 0.95 0.75 0.97 2.6
City 0.92 0.39 0.94 0.84 0.97 2.8
State 0.89 0.63 0.96 0.88 0.97 1.3
Phone 0.94 0.93 0.95 0.89 0.97 2.3
Average 0.87 0.57 0.95 0.80 0.97 2.3

(c) BigBook

Phase 1 Phase 2
Attribute FI/NM FO C1 S+P C2 G %
Author 0.79 0.60 0.83 0.65 0.88 5.9
Title 0.60 0.52 0.70 0.48 0.79 13.8
Booktitle 0.82 0.46 0.81 0.67 0.86 6.2
Journal 0.69 0.53 0.72 0.62 0.84 16.9
Volume 0.84 0.88 0.88 0.72 0.90 2.9
Pages 0.79 0.80 0.83 0.73 0.86 3.9
Date 0.72 0.76 0.79 0.69 0.87 9.5
Average 0.75 0.65 0.79 0.65 0.86 8.1

(d) CORA

Phase 1 Phase 2
Attribute FI/NM FO C1 S+P C2 G %
Bedroom 0.75 0.36 0.79 0.48 0.82 3.8
Living 0.81 0.46 0.85 0.69 0.89 5.6
Phone 0.79 0.84 0.80 0.62 0.87 8.8
Price 0.85 0.85 0.86 0.66 0.92 7.2
Kitchen 0.80 0.29 0.79 0.73 0.83 4.9
Bathroom 0.73 0.59 0.75 0.69 0.77 2.9
Suite 0.85 0.45 0.87 0.60 0.89 2.4
Pantry 0.79 0.50 0.77 0.66 0.80 3.7
Garage 0.78 0.52 0.79 0.73 0.84 6.6
Pool 0.77 0.63 0.78 0.78 0.82 5.2
Others 0.70 0.44 0.72 0.68 0.73 1.6
Average 0.78 0.54 0.80 0.67 0.84 4.8

(e) WebAds

Table 2: Attribute-level results for each dataset.

to the input text, while results in column “C2” also account for the
use of structure-related source-dependent features learned from the
input text itself.

To provide a perspective on the contribution of each feature to

the overall extraction quality, we also present F-measure values ob-
tained when each type of feature is individually used. The cases
considered are: (1) either the fitness function for textual attributes
(Eq. 4) or the NM function for numeric attributes (Eq. 5) is used
(Column “FI/NM”); (2) only the format function (Eq. 6) is used
(Column “FO”); and (3) only the pos and seq (Eq. 9) functions are
used (Column “S+P’). We recall that “C1” results are obtained by
combining in Phase 1 functions fitness (or NM) and format by using
Eq. 1, and that “C2” results are obtained by combining in Phase 2
functions fitness (or NM), format, pos and seq by using Eq. 2.

As anticipated, we observe that the attribute-level results ob-
tained in Phase 1 by combining features are already acceptable
and, more importantly, are sufficient to yield a reasonable approx-
imation of the records’ structure. Furthermore, the fitness and MN
functions are, in general, more accurate than the format function.
However, their combination, as proposed in our method, leads to
better results in all cases.

Phase 2 results are higher in all cases. While in most cases the
gain is under 6%, there are interesting cases in which this gain
is above 10%. For example, Title and Journal are attributes that
present a large content overlap in the Bibliography dataset. Due to
this problem, the percentage of labels incorrectly assigned to val-
ues of Title and Journal in Phase 1 was 25% and 16% respectively.
In Phase 2, the majority of these misassignments were corrected. A
large gain was also observed in the case of attribute Brand from the
Products dataset. Because brand names are formed by terms usu-
ally not available in the knowledge base, more than 12% of values
of this attribute were left unmatched in Phase 1. The structure-
related features used in Phase 2 helped to recover these errors.

The behavior of our method when dealing with numeric attributes
deserves specific comments. Considering the eight numeric at-
tributes from the five distinct datasets used in our experiments,
the NM function yielded an average attribute-level F-measure of
0.83 when used alone. This result is close to that obtained for
the non-numeric attributes using the fitness function. For instance,
with phone numbers, using only the NM function we obtained F-
measure values of 0.94 and 0.79 for the BigBook and WebAds
datasets, respectively. Moreover, the format function is also used
with these attributes, but, in this case, unlikely to what happens
with the NM function, values are not normalized (see Section 4.1).
When used alone, this function also yielded an average F-measure
of 0.83. Finally, the structure-based features helped to improve
these results. When combined with the other two features, an av-
erage F-measure of 0.91 was obtained. As we can see, our method
achieves equally good results with both numeric and textual at-
tributes.

Dataset Phase 1 Phase 2 Gain %
Recipes 0.79 0.90 13.2
Products 0.82 0.88 7.2
BigBook 0.86 0.93 8.8
CORA 0.69 0.83 19.3
WebAds 0.70 0.77 9.7

Table 3: General record-level results for each dataset.

549

Table 3 presents, for each dataset, record-level F-measure re-
sults obtained in Phase 1 and Phase 2. While results in Phase 1
are also acceptable (most of them above 0.7), improvements in la-
beling achieved in Phase 2 had a very positive effect. Indeed, in
Phase 2 record-level F-measure has achieved results above 0.8 for
four out of five datasets and, in all cases, gains have been above
7%. Notice, for instance, the case of the CORA dataset, in which
the gain is higher than 19%, reflecting the improvements obtained
by the structure-aware labeling step. As we can notice, adding the
structure-related features (only possible in Phase 2) also leads to
significant improvements regarding record-level results.

6.3 Impact of the Knowledge Base
In [8] the authors present an experiment to evaluate how depen-

dent on the composition of the knowledge base is the quality of the
extraction results.

In the case of JUDIE such study is even more important for
the following reasons: (1) the extraction process entirely relies on
the initial Structure-free Labeling step, which is solely based on
content-related features learned from the knowledge base; (2) while
in our closest competitor, ONDUX [8], the knowledge base is used
only for matching, JUDIE also deploys a format feature based on
its values. Thus, in JUDIE the knowledge base plays a crucial role,
as we show in this experimental evaluation.

Here we compare JUDIE with ONDUX and U-CRF. These two
methods are the current state-of-the-art unsupervised IETS meth-
ods. U-CRF was developed by adapting the publicly available im-
plementation of CRF by Sunita Sarawagi6 according to [5] and us-
ing additional features described in [10] (e.g., dictionary features,
word score functions, transition features, etc.). As required by U-
CRF, a batch of input strings is used to infer the order of the at-
tribute values. Based on the information provided in [5], this batch
is built using a sample of 10% of these strings.

As in [8], this experiment was performed using the BigBook
dataset from the RISE repository. The knowledge base for ON-
DUX and JUDIE and the reference table for U-CRF were built by
using sets of records already extracted. Once again, we notice that
there is no intersection between these records and the correspond-
ing datasets used in this experiment. Recall that while ONDUX
and U-CRF received the input in a record-by-record basis, JUDIE
received a single input text containing all 2000 records with no ex-
plicit delimiters between them.

The experiment consisted of varying the number of known terms
common to the knowledge base (or reference table in the case of
U-CRF) and the input test records from 50 to 1000 terms and eval-
uating the extraction quality in terms of average attribute-level F-
measure. The results are presented in Figure 5(a).

The first important observation regarding this graph is that JUDIE
is, as expected, more dependent on the knowledge base than ON-
DUX and U-CRF. Indeed, only when the number of shared terms
approaches 1000, it reaches the same quality level as the baselines.
This occurs because in both ONDUX and U-CRF the structure-
related and content-related features are independent, while in JUDIE,
as previously explained, content-related features are used to induce
structured-based features through successive refinement steps.

Indeed, if content-based features are not enough, the induction of
structure-based features fails. This can be observed in Figure 5(a),
where the attribute-level F-measure values obtained with less than
250 common terms are very low. For this level of term intersection,
the results of JUDIE’s Phase 1, i.e., before any refinement, are bet-

6http://crf.sourceforge.net/

ter than the results of its Phase 2, in which structure-based features
are also considered.

In spite of this limitation, JUDIE achieves results comparable to
the state-of-the-art baselines for a task considerably harder, that is,
extracting information while simultaneously uncovering its under-
lying structure. As already explained, this underlying structure is
assumed as provided in the baseline methods. In Section 6.5, we
present a detailed comparison between JUDIE and these baselines
using other datasets.

6.4 Impact of Structure Diversity
In this section we study how our method deals with different

types of structure observed in the implicit records found in the in-
put text. For this we consider two different scenarios, structure
diversity in different sources and within a single source. These two
scenarios are discussed in the following.

6.4.1 Structure Diversity in Different Sources
To discuss the first scenario we use the Classified Ads domain,

for which the knowledge base was build using data from one source
and the input texts came from other five distinct sources. In the
experiments reported below, each source corresponds to a different
input text. Here, our goal is to demonstrate that the content-related
features learned from data taken from one source can be used to
induce the structure-related features for several related input texts
from other distinct sources in the same domain.

In Figure 5(b) we show the attribute-level and record-level F-
measure values obtained for each different source given as input to
JUDIE. In all cases, the values are above 0.7 and for two cases they
are above 0.8. This indicates that our method is source-independent,
since it was able to correctly uncover the structure of implicit records
in each source while also achieving good extraction level quality.
This occurs despite of the differences in structure of the implicit
records in each source.

6.4.2 Structure Diversity within a Single Source
For discussing the second scenario we use the Bibliography do-

main in which the knowledge base was built from the PersonalBib
dataset [14] and single input texts came from the CORA collec-
tion. In this case we aim at showing how our method deals with a
heterogeneous dataset in terms of structure.

By examining the distribution of citation styles among the 500
implicit records available in the CORA dataset, a total of 33 distinct
styles were identified, but only six of them account for more than
90% of the citations7.

For these experiments, we generated different input texts con-
taining 100 to 500 implicit records randomly selected from the
CORA dataset. We then process each of these input texts sepa-
rately with JUDIE using the knowledge base described above. The
process was repeated 10 times for each input text size.

To characterize the diversity of each input text we have used
the Shannon Index [18], which is frequently used to measure di-
versity in categorical datasets. This index is defined as: H =
−
∑S

i=1 piln(pi), where S is the total number of styles (33 in this
case) and pi is the relative frequency of each style i found in the in-
put text. As the H index does not return values between 0 and 1, we
normalize H values obtained for each input text by the maximum
possible value for H . This value occurs when the input contains all
citations available in the CORA dataset, that is, when all 33 differ-
ent citation styles are present in the input text8. Thus, the closer the
7A citation style characterized by the set of attributes composing
the record and their ordering.
8H = 2.23671 for the input containing 500 records.

550

(a) Varying the number of shared terms. (b) Results for distinct Ads sources. (c) Results varying diversity.

Figure 5: Results obtained by our method varying distinct aspects in the input texts.

normalized H value is to 1, the greater is the diversity of the input
text.

The results obtained are presented in Figure 5(c) in terms of
the average record-level F-measure, considering Phases 1 and 2
of JUDIE. As a baseline, we use the record-level F-measure we
would obtain if the labeling of attribute values was perfect in the
input texts. In the X-axis, we present the number of records and the
diversity of each input text in terms of the normalized H index.

This figure shows that our SD algorithm deals very well with
structure diversity if the labels are correctly assigned, as it can be
seen by comparing the curves representing JUDIE Phase 1 and the
perfect labeling. As we can also observe, the improvements on
the quality of the labeling provided by adding the structure-related
features in Phase 2 impacts positively on the quality of the structure
discovery. Indeed, record-level F-measure values obtained in Phase
2 are close to those obtained with the perfect labeling.

6.5 Comparison with Previous Work
In this section we present a comparison between the results ob-

tained by JUDIE with those obtained by two state-of-the-art IETS
methods, namely ONDUX [8] and U-CRF [5].

This comparison is made by reproducing in Tables 4(a) to (c)
the attribute-level results obtained for three datasets, which were
reported in [8] for the two methods, along with the results we obtain
by running JUDIE over the same datasets.

While ONDUX was first presented and fully described in that
paper, U-CRF was used there as a baseline. The details on its im-
plementation are summarized in Section 6.3. In all cases, we have
used the same sources for generating the knowledge bases and the
input texts. We recall again that among the three methods, JUDIE
is the only one that is able to both discover the structure and extract
information automatically.

As a general observation, in spite of the fact the JUDIE faces
a harder task, its performance was very close to that of ONDUX.
In most cases, ONDUX outperformed JUDIE, but there are a few
cases in which JUDIE performed better than ONDUX. These cases
are explained mainly by the use of the format feature in JUDIE.
Such feature is not considered in ONDUX.

In comparison with U-CRF, JUDIE performed worse on the Big-
Book dataset, but better on the CORA and WebAds datasets. This
was expected, since these datasets are much more irregular in terms
of structure than the first one.

6.6 Performance Issues
In Table 5 we present the running times of the experiments exe-

cuted with JUDIE. For the datasets we used to run comparative ex-

Attribute JUDIE ONDUX U-CRF
Name 0.967 0.996 (2.97%) 0.995 (2.86%)
Street 0.970 0.995 (2.58%) 0.993 (2.37%)
City 0.971 0.995 (2.43%) 0.990 (1.92%)
State 0.971 1.000 (2.95%) 0.999 (2.84%)
Phone 0.975 1.000 (2.57%) 0.988 (1.34%)

Average 0.971 0.997 (2.70%) 0.993 (2.27%)

(a) BigBook

Attribute JUDIE ONDUX U-CRF
Author 0.881 0.922 (4.65%) 0.876 (-0.57%)
Title 0.794 0.792 (-0.25%) 0.694 (-12.59%)

Booktitle 0.855 0.892 (4.33%) 0.560 (-34.50%)
Journal 0.843 0.908 (7.71%) 0.553 (-34.40%)
Volume 0.901 0.958 (6.33%) 0.430 (-52.28%)
Pages 0.861 0.849 (-1.39%) 0.503 (-41.58%)
Date 0.865 0.895 (3.47%) 0.488 (-43.58%)

Average 0.857 0.888 (3.60%) 0.586 (-31.60%)

(b) CORA

Attribute JUDIE ONDUX U-CRF
Bedroom 0.818 0.861 (5.25%) 0.791 (-3.30%)

Living 0.893 0.905 (1.34%) 0.724 (-18.93%)
Phone 0.873 0.926 (6.12%) 0.754 (-13.59%)
Price 0.923 0.936 (1.41%) 0.786 (-14.84%)

Kitchen 0.830 0.849 (2.29%) 0.788 (-5.06%)
Bathroom 0.773 0.792 (2.51%) 0.810 (4.84%)

Suite 0.894 0.881 (-1.50%) 0.900 (0.62%)
Pantry 0.800 0.796 (-0.55%) 0.687 (-14.17%)
Garage 0.844 0.816 (-3.28%) 0.714 (-15.37%)

Pool 0.818 0.780 (-4.66%) 0.683 (-16.52%)
Other 0.732 0.796 (8.68%) 0.719 (-1.84%)

Average 0.836 0.849 (1.52%) 0.760 (-9.16%)

(c) WebAds

Table 4: Comparison of results.

periments with our baselines ONDUX and U-CRF, we also include
the running times of these systems. As the number of implicit in-
put records is different for each dataset, we present both the total
running time and the average running time by record.

Before discussing the results, we notice that JUDIE running times
depend on two main factors: the number of implicit input records
and the diversity in the structure of these records. Regarding the
first factor, in all steps the input is scanned once. Thus, there is a
linear influence of this factor. As for the second factor, having more

551

Datasets Total (secs.) Avg. per record (msecs.)
JUDIE ONDUX U-CRF JUDIE ONDUX U-CRF

Recipes 37.5 - - 75.1 - -
Products 69.2 - - 6.9 - -
BigBook 50.2 14.1 297.1 25.1 7.1 148.5
CORA 74.4 10.7 185.9 148.8 21.4 371.8

WebAds 59.2 8.0 2701.9 118.5 16.0 5403.7

Table 5: JUDIE running times in comparison with baselines.

diverse records in terms of structure implies that a larger number of
edges will occur in the Adjacency Graph and in the PSM. Thus,
processing these graphs has higher costs for more heterogeneous
structures. This explain why the average running times per record
are higher for CORA and WebAds, which, as discussed in Sec-
tion 6.4, are the more diverse datasets in our experiments.

Nevertheless, these running times are in the same order of mag-
nitude as those of ONDUX and are, in general, smaller than those
of U-CRF. ONDUX is faster since it executes fewer steps and does
not include a structure discovery step. U-CRF has a worst perfor-
mance due to costly inference steps, particularly when dealing with
diverse structures, and due to the use of a larger number of features
than ONDUX and JUDIE.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented JUDIE a novel method for ex-

tracting semi-structured data records in the form of continuous text
(e.g., bibliographic citations, postal addresses, classified ads, etc.)
with no explicit delimiters between them. Differently from state-
of-the-art IETS methods, in which the structure of the data records
is manually supplied by an expert user in a training step, JUDIE is
capable of detecting the structure of each individual record being
extracted without any user assistance. For this, we propose a novel
Structure Discovery algorithm that, given a sequence of labels rep-
resenting attributes assigned to potential values, groups these labels
into individual records by looking for frequent patterns of label
repetitions among the given sequence. We have also shown how
to integrate this algorithm in the information extraction process by
means of successive refinement steps that alternate information ex-
traction and structure discovery.

By means of a thoroughly experimental evaluation, we have stud-
ied different aspects regarding our method and compared it with
state-of-the-art IETS methods. Results indicate that our method
performs quite well when compared with such methods, even with-
out any user intervention.

As future work , we intend to investigate techniques for automat-
ing the generation of knowledge bases usually required by unsuper-
vised IETS methods. In addition, since JUDIE currently does not
handle nested structures, we also plan to address this issue by gen-
eralizing the SD algorithm to deal with nested cycles.

Acknowledgements
This work is partially supported by INWeb (MCT/CNPq grant 57.3871/2008-
6), by project MinGroup (CNPq grant 575553/2008-1), by UOL Bolsa Pesqui-
sa program (grant 20090213165000), and by the authors’ individual grants
and scholarships from CNPq, CAPES, FAPEMIG and FAPEAM.

8. REFERENCES
[1] E. Agichtein and V. Ganti. Mining Reference Tables for

Automatic Text Segmentation. In Proc. 10th ACM SIGKDD
Intl. Conf. on Knowl. Discov. and Data Mining, pages 20–29,
2004.

[2] L. Barbosa and J. Freire. Using Latent-structure to Detect
Objects on the Web. In Proc. of the 13th Intl. Workshop on
the Web and Databases, pages 1–6, 2010.

[3] W. Cohen and S. Sarawagi. Exploiting Dictionaries in
Named Entity Extraction: Combining Semi-Markov
Extraction Processes and Data Integration Methods. In Proc.
10th ACM SIGKDD Intl. Conf. on Knowl. Discov. and Data
Mining, pages 89–98, 2004.

[4] A. Doan et. al. Information Extraction Challenges in
Managing Unstructured Data. SIGMOD Record,
37(4):14–20, 2008.

[5] C. Zhao et. al. Exploiting Structured Reference Data for
Unsupervised Text Segmentation with Conditional Random
Fields. In Proc. SIAM Intl. Conf. on Data Mining, pages
420–431, 2008.

[6] D. Buttler et. al. A Fully Automated Object Extraction
System for the World Wide Web. In Proc. of the 21st Intl.
Conf. on Dist. Comp. Syst., pages 361–370, 2001.

[7] D. W. Embley et. al. Conceptual-model-based data extraction
from multiple-record web pages. Data Knowl. Eng.,
31(3):227–251, 1999.

[8] E. Cortez et. al. ONDUX: On-Demand Unsupervised
Learning for Information Extraction. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data, pages 807–818, 2010.

[9] F. Mesquita et. al. LABRADOR: Efficiently publishing
relational databases on the web by using keyword-based
query interfaces. Inform. Proc. and Management,
43(4):983–1004, 2007.

[10] J. D. Lafferty et. al. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proc. 8th Intl. Conf. on Mach. Learning, pages
282–289, 2001.

[11] S. Agrawal et. al. Automated Ranking of Database Query
Results. In Proc. of the First Biennial Conf. on Innov. Data
Syst. Research, 2003.

[12] V. Borkar et. al. Automatic Segmentation of Text into
Structured Records. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data, pages 175–186, 2001.

[13] D. Freitag and A. McCallum. Information Extraction with
HMM Structures Learned by Stochastic Optimization. In
Proc. of the 17th Nat. Conf. on Art. Intell. and 12th Conf. on
Innov. Appl. of Art. Intell., pages 584–589, 2000.

[14] I. R. Mansuri and S. Sarawagi. Integrating Unstructured Data
into Relational Databases. In Proc. 22nd Intl. Conf. on Data
Engineering, page 29, 2006.

[15] J. Pearl and G. Shafer. Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan Kaufmann,
1988.

[16] F. Peng and A. McCallum. Information extraction from
research papers using conditional random fields. Inform.
Proc. and Management, 42(4):963–979, 2006.

[17] S. Sarawagi. Information extraction. Foundations and Trends
in Databases, 1(3):261–377, 2008.

[18] C. E. Shannon. A mathematical theory of communication.
ACM SIGMOBILE Mobile Comp. and Comm. Rev.,
5(1):3–55, 2001.

[19] S. Soderland. Learning information extraction rules for
semi-structured and free text. Mach. Learn., 34:233–272,
1999.

552

