
Annotating Database Schemas to Help Enterprise Search

Eli Cortez, Philip A. Bernstein, Yeye He, Lev Novik
Microsoft Corporation

Redmond, WA, 98052, U.S.A

{eli.cortez, philbe, yeyehe, levn}@microsoft.com

ABSTRACT
In large enterprises, data discovery is a common problem
faced by users who need to find relevant information in re-
lational databases. In this scenario, schema annotation is
a useful tool to enrich a database schema with descriptive
keywords. In this paper, we demonstrate Barcelos, a sys-
tem that automatically annotates corporate databases. Un-
like existing annotation approaches that use Web oriented
knowledge bases, Barcelos mines enterprise spreadsheets to
find candidate annotations. Our experimental evaluation
shows that Barcelos produces high quality annotations; the
top-5 have an average precision of 87%.

1. INTRODUCTION
Large enterprises typically have thousands of relational

databases, each containing tens to hundreds of tables, with
many columns per table. To generate reports or new appli-
cations, users face the problem of data discovery. They have
to find database tables that are potentially relevant to the
task at hand. Then, for each of these candidate tables, they
need to understand its content to determine whether it is
truly relevant. Both of these steps are quite challenging. A
user is typically familiar with only a small fraction of the en-
terprise’s databases. For the others, the schema’s table and
column names are often not very descriptive of the content.
Therefore, even if there is a catalog of schemas covering the
enterprise’s databases, keyword search over schema informa-
tion is ineffective at finding candidate tables and columns.

To illustrate the last point, we sampled 4216 data columns
in 639 tables from 29 databases used by Microsoft’s IT or-
ganization. We found that many frequently-used column
names are very generic, such as: name, id, description,
field, code, and column (representing 28% of all columns
we sampled). These generic column names are useless for
helping users find tables that have the data they need.

The table shown in Figure 1 gives one such example. No-
tice that the first two column names in the table are overly-
generic and uninformative. The last column name is an
abbreviation for “line of business”, which may be cryptic

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

ID Name LOB

DCF534B6-9022-4AB0-8F45-0076012FC1A5 N/A N/A

0770C967-2FA8-4640-B245-00DCC6DDC8C5 LP N/A

3289ADC5-3B0F-49F9-A663-00F64CA1159D LATAM N/A

1A7AFF61-D59D-4A37-959F-01012228BE5A Sitel LATAM PROGRAM

6ED037B5-33B0-401C-AF51-010C8AC4006A LP LATAM Sitel email latammrsc PROGRAM

F0AAD488-120E-4527-81C9-011A92D76F6B LP LATAM Sitel email mpnlatax PROGRAM

C0FBD196-1B33-424E-B481-0187C1A6A143 LP LATAM Sitel email maps N/A

AA13A521-E295-4FDA-9E75-01996D4D1AC1 LP LATAM Sitel email psm N/A

237654EB-C72D-4A6E-A7D9-020F44BF35EF LATAM LP Sitel PSA BR N/A

05BA727B-A0AE-44DF-A4C0-0231B4BC7965 APGC LP Sitel PSA CO TESTING

7DBE1737-5F78-41F4-9B32-02725A9BF2B8 EMEA LP Sitel PSS CO TESTING

Figure 1: A typical corporate database table with
generic column names (and redacted values).

for some users. Such non-descriptive column names make it
difficult to search and understand the table.

Some companies address this problem by using data stew-
ards to enrich database tables and columns with textual
descriptions and keyword annotations. Data stewards also
serve as consultants to help others find and understand the
data they need. However, this approach is time consuming
and hence expensive. Therefore, data stewards often focus
only on the most valuable databases, ignoring databases that
are less frequently used.

To help solve the preceding problems, we developed Barce-
los, a system that automatically generates candidate key-
words to annotate columns of database tables. This greatly
reduces the effort of annotating database schemas, even if
some human curation of the generated keywords is later re-
quired. Moreover, it enables all databases in the enterprise
to be annotated, even those that are infrequently used.

Barcelos works by mining spreadsheets, which are typi-
cally abundant in an enterprise’s intranet. Many of these
spreadsheets were generated by queries over the enterprise’s
databases. Our main observation is that since spreadsheets
are usually designed to be read, they often have more mean-
ingful column names than those of the database columns
from which the spreadsheet was generated. Therefore, we
can use the spreadsheet’s column names as candidate anno-
tations for the corresponding database columns. The tech-
nique is quite effective. For the example in Figure 1, Barce-
los produces annotations “TeamID” and “Team” for the first
column, “Delivery Team” and “Team” for the second col-
umn, and “Line of Business” and “Business” for the third.

To the best of our knowledge, Barcelos is the first pub-
lished system to automatically annotate proprietary corpo-
rate databases. We make the following contributions:
• A method to automatically extract tables from a corpus

of enterprise spreadsheets.

1936

• A method for identifying and ranking relevant column
annotations, and an efficient technique for calculating it.
• An implementation of our method, and an experimental

evaluation that shows its efficiency and effectiveness.

2. RELATED WORK
People have looked at a similar problem of discovering

semantics of tables in the context of Web tables [5, 6, 8],
where the goal is better Web table understanding to benefit
Web table search. Solutions rely on general-purpose Web-
oriented Knowledge Bases (KBs), such as YAGO [7] and
FreeBase [1]. These KBs have rich entities and relationships,
but require extensive effort to build and maintain [1, 7].

While these KB-based techniques are natural in the con-
text of Web tables, they do not generally apply to enter-
prise table annotation. Given the proprietary nature of en-
terprise data, it is unlikely that internal data such as sales
reports, organization hierarchies, or employee names can be
found on the Web. Thus, they will be absent from exist-
ing Web-oriented KBs, making KB-based annotation unsuit-
able for enterprise data annotation. Furthermore, building
KBs from scratch for each individual enterprise is unlikely
to be worthwhile, given the amount of effort required and
the number of applications that can benefit from it.

One schema-only approach for finding attribute synonyms
in Web tables uses attribute-name co-occurrence [2]: if at-
tributes A and B co-occur frequently and so do A and C,
then B and C are likely to be synonyms. But this approach is
not always robust, due to ambiguity in attribute names (e.g.,
“id”, “code”). Instead, we use a value-based approach that
finds synonyms by intersecting sets of values in attributes B
and C. Data values are less ambiguous than column names,
and the set of values in a column is indicative of the concept
in question, making our technique more robust.

NLP-based techniques, such as textual Hearst patterns as
used in Probase [9] and YAGO [7], also apply to the problem
of table annotation. The idea is to use documents and text
patterns to generate IsA relationships. For example, if we
see enough text segments like “Microsoft products, such as
Internet Explorer 10, SQL Server 2012, ...”, we could gen-
erate IsA relationships: (“Internet Explorer 10”, “Microsoft
product”), (“SQL Server 2013”, “Microsoft product”). We
can use these IsA labels to annotate columns if enough la-
bels in the same column agree. We tried this approach by
instantiating Hearst patterns with common instance values
and using them as text queries in Microsoft’s internal search
engine. Unfortunately, we could not retrieve even a sin-
gle document for many popular IsA pairs that we initially
expected to generate many hits. We believe the reason is
that enterprise documents are much sparser than Web doc-
uments, perhaps because people are not as incentivized to
create textual content in an enterprise setting as in the Web.
Instead, they may spend more time crunching numbers and
putting together reports, which end up becoming structured
data such as spreadsheets. Our spreadsheet-based technique
thus adapts to the characteristics of enterprise data and
leverages this unique enterprise data asset for annotation.

3. SYSTEM ARCHITECTURE
Figure 2 presents a high level picture of Barcelos’ archi-

tecture. The offline phase (the lower half) consists of the
spreadsheet crawling and indexing components. The on-
line phase (the upper half) implements an annotation server

Offline

Spreadsheet discovery

Spreadsheet
Crawler

Spreadsheet
Corpus

Corporate
Filesystem

Spreadsheet Processing

Column
Extrac�on

Column
Indexing

Column
Index

Online

Annota�on Server

Client – Annota�on Requests

1. Target Database Column

2. Candidate Column Annota�ons

Store column index in main memory of annota�on server

Select and
Rank

Annota�ons

Column Annota�on

Figure 2: End-to-End system architecture.

that selects and ranks relevant annotations for each target
database column. We briefly describe each component be-
fore going into detail.
• Spreadsheet discovery: This component crawls an en-

terprise intranet for spreadsheet files. Spreadsheet files can
also be obtained without crawling by accessing the indexes
of intranet search engines, such as Microsoft SharePoint and
Google Search Appliance.
• Spreadsheet Processing: This component has two steps.

The first step extracts tables from spreadsheets, where iden-
tifying table boundaries and header rows are the key chal-
lenges. The second step builds indexes using column headers
and values, to speed up the annotation phase. The indexes
map columns to values and vice versa.
• Column Annotation: We calculate a similarity score to

rank candidate annotations for a given database column.
The score is based on value overlap between the database
and spreadsheet columns plus other contextual information.

3.1 Spreadsheet Discovery
The goal of this component is to create a spreadsheet cor-

pus that represents the data within the enterprise. Its im-
plementation depends on where the files are stored and how
they are protected. It could be as simple as traversing di-
rectories, or can be more sophisticated by crawling intranet
pages and dealing with privacy and file permissions.

3.2 Spreadsheet Processing

3.2.1 Table extraction from spreadsheets
Extracting tabular data is a challenging task by itself.

Spreadsheet files usually contain multiple worksheets, each
potentially containing multiple tables. Unlike tables in HTML
files [2], worksheets have no standard delimiters between ta-
bles. We therefore used heuristics to guide the extraction
task. For example, visual borders are a very strong signal
of a delimited area of spreadsheet cells, and font formatting
(bold, italic) in row-one indicates a possible table header.

Considering the content information (strings) and the for-
matting style (font color, borders, cell color), we extract the
tables in a worksheet by finding the coordinates that repre-
sent a squared area, called the content area. It is the largest
area within a worksheet that covers all textual content and
is identified by the coordinates of its four corners.

If the content area has no empty cells, it is likely to be
the one and only table in the worksheet. If it does have
empty cells, the worksheet might contain multiple tables. To

1937

find them, we iterate over the cells in the content area, top-
down and left-right. When an empty row and empty column
are found, we assume they comprise a table boundary and
restart the iterative process looking for new tables.

In order to extract column names from table header rows,
we use a rule-based approach to detect header rows (e.g.,
if the first row has non-text fields, then it is unlikely to be
a header row). Existing techniques such as classifiers used
in [3] can also be applied here. We further use a rule-based
classifier to determine the data-type of each column.

Spreadsheet columns whose names are not likely to be
good annotations are discarded. In particular, we remove
tables that have only one column and spreadsheet columns
where more than 70% of the cells are empty.

In our experiments, this simple solution does an excellent
job extracting tables from a diverse set of spreadsheet files.
For ease of manipulation, each extracted table is stored as
a JSON file and its schema (i.e., column names and data
types) is stored in a SQL database.

3.2.2 An inverted value index for efficient processing
Depending on the size of the spreadsheet corpus, the num-

ber of extracted tables and columns can be in the millions.
As we will see, the search for column annotations involves a
set-similarity calculation over values in spreadsheet columns.
To speed this up, we build two main-memory indexes. One
of them maps column-value→column-id, and the other maps
column-id→column-value. These are reminiscent of classi-
cal inverted indexes used for information retrieval, and are
amenable to sort-merge style intersection joins.

We considered other indexing schemes for estimating set-
similarity, for example, locality sensitive hashing schemes
such as min-hashing for Jaccard similarity. As we will see,
our scenario requires the use of Jaccard Containment, for
which min-hash does not apply. While there are other tech-
niques for Jaccard Containment, such as prefix filters [4],
they generally require a fixed similarity threshold to be known
a priori.

3.3 Column Annotation
For a given target database column c, the annotation

phase returns a rank-ordered list of possible annotations for
c. Intuitively, the name of a spreadsheet column sc is a valid
candidate if its values overlap those of c. In the next section
we describe our approach of ranking candidate annotations.

3.3.1 A regression model to rank annotations
We built a hand-tuned regression model to rank candi-

date annotations, mainly based on two groups of features.
The first group are value-related, denoted by V Rf , which
measure the set-similarity between values in c and sc. The
larger the overlap between the sets of values, the more likely
that the column name for sc is also a good name for c.

Symmetric set-similarity measures such as Jaccard Simi-
larity are not suitable in our case, because the relationship
between c and sc is in fact asymmetric. If c is mostly con-
tained in sc, then the name of sc is very likely a good name
for c. However, if sc is mostly contained in c, it is not guar-
anteed that the name of sc applies to c, because sc might be
just a sub-concept of c. For example, sc may list all US sales
districts, while c may have all sales districts in the world. In
this case, the column name of sc, “US sales district,” would
not be a good annotation for c.

We therefore compute similarity using the Jaccard Con-
tainment [4] of sc in c, which is defined as:

JC(sc, c) =
|V (sc) ∩ V (c)|
|V (c)| (1)

where V (sc) and V (c) are the sets of values in sc and c,
respectively. In general the value set can be weighted by TF-
IDF-like weighting schemes. However, we find that values
in enterprise database columns are usually quite unique and
distinct, and the distribution of column values are not as
skewed as (say) stop-words in general text processing. We
therefore use uniform weighting in our model.

In order to measure V Rf (sc, c), we use a weighted com-
bination of JC(c, sc) and JC(sc, c) as follows.

V Rf (sc, c) = β JC(sc, c) + (1− β) JC(c, sc) (2)

We empirically tuned parameter β. Setting β = 0.2 achieves
robust performance across the different databases we tested.
This is consistent with our analysis above, that JC(c, sc)
should be given more weight because of the asymmetric re-
lationship between c and sc. However, JC(sc, c) is still sig-
nificant; if a large fraction of values of sc is not in c, then
sc’s column name is probably not a good annotation for c.

It turned out that these value-based features alone are
not always enough. For example, consider a database col-
umn with a small number of values. Even if it is mostly
contained in a spreadsheet column sc, it may still refer to a
very different concept than sc. To address this issue, Barce-
los uses context information in other attribute names in the
same table to better determine the concept in question.

This gives rise to the second group of features, denoted
by CRf , that uses the similarity of other attribute names
in the database table and spreadsheet table. The intuition
is that if attribute names of the two tables are similar, then
chances are they refer to the same thing, making us more
confident to use one column to annotate the other.

Let context(sc) and context(c) be the set of unique tokens
in the contextual attribute names of sc and c, respectively.
We use the standard Jaccard similarity for CRf (sc, ci):

CRf (sc, ci) = Jaccard(context(sc), context(ci)) (3)

Finally, the overall ranking score is a linear combination
of these two components V Rf and CRf .

Score(c|sc) = α V Rf (sc, cj) + (1− α) CRf (sc, cj) (4)

where α controls the relative importance of value-related and
context-related features. With α = 0.7, Barcelos makes ro-
bust ranking predictions across the databases that we tested,
as we will see in the next section.

It is possible to also consider other features, such as the
number of spreadsheet columns in the corpus supporting a
particular annotation. For example, if column c overlaps
with 1000 identical spreadsheet columns that have the same
column name A, then A is likely to be a good annotation
for c. Aggregating such signals using models like Noisy-Or
should further improve our scoring method.

3.3.2 Experimental evaluation
To evaluate the proposed approach, we conducted exper-

iments that assess the quality of the annotations provided
by Barcelos. We ran the spreadsheet discovery phase on
some Microsoft-internal SharePoint sites, which found over
500K spreadsheet files. Barcelos could open only 48K of

1938

them because it can only handle the latest Excel format (i.e.,
.xlsx) and many files were encrypted. It extracted 589K ta-
bles from those files, producing indexes over 1.1M columns,
24.4M values, and 97.2M value-occurrences, which we used
for all of our experiments.

We first evaluated the quality achieved by Barcelos com-
pared with the KB-based approach in [8]. To build the KB
required by [8], we used our spreadsheet table corpus, treat-
ing each column name as a concept and each column-value
as an instance of the concept. We randomly selected 20
database columns to receive annotations and computed the
top-K annotations using Barcelos and using the scoring func-
tion in [8]. As shown in Table 1, the precision of Barcelos is
uniformly better, on average by 17%.

Table 1: Comparing the top-K annotations of Barce-
los and the KB-based approach of [8].

Metric Barcelos Baseline Gain
Precision of top 1 0.95 0.80 19%
Precision of top 5 0.89 0.77 16%
Precision of top 10 0.76 0.65 17%

We also evaluated the precision of Barcelos to annotate
120 database columns from 30 corporate databases. The
precision of the top annotation was again 95% and that
of the five top-ranked annotations was 87%. These results
show that our approach of mining enterprise spreadsheets
for database column annotations yields high quality results.
In our opinion, the precision is good enough to deploy in a
commercial setting.

Finally, we evaluated the latency of the proposed system
for annotating those 120 database columns. The average
response time was less than one second per database column,
making it suitable for interactive online annotation.

4. DEMONSTRATION DETAILS
We will demonstrate Barcelos on the spreadsheet corpus

and database columns described in Section 3.3.2. Users can
interact with the system by choosing a database column as
input. The interface displays the table schema and column
values of the selected column. Pressing “submit” tells Barce-
los to generate a rank-ordered list of annotations with their
scores. Figure 3 gives a screen-shot of the result displayed
by Barcelos for the Name column in Figure 1.

Figure 3: Barcelos’ output for the table in Figure 1.

5. CONCLUSION AND FUTURE WORK
We described a new system, Barcelos, that annotates data-

base columns by mining enterprise spreadsheets. These an-
notations can be used to help users find relevant databases

and understand their content. For a given database column
c, Barcelos returns a rank-ordered list of names to use as
annotations for c. It calculates this list using the names
of spreadsheet columns whose data heavily overlaps that of
c. Our experiments over a large spreadsheet corpus showed
high precision for the top five names generated.

Our technique is general in that it can use metadata from
any structured dataset (the “source”) to annotate any other
structured data (the “target”). For example, one could use
it to annotate Hadoop data files, using spreadsheets as the
source dataset. In fact, the source and target can be the
same dataset. Given a field in the dataset, one could use the
other fields as the source and thereby find the names of other
fields that have highly similar data. For a large dataset,
one probably needs to sample the data values, which might
require modifying the similarity scoring used in Barcelos.

One extension worth exploring is to use SQL scripts and
stored procedures. SQL queries often rename the result
columns in human-friendly ways, e.g., with the “SELECT
Column-A AS Name-B” construct. Given a query log or set
of scripts and their associated databases, one could propa-
gate these human-friendly column names back to databases.
One difficulty with this approach is the lack of a centralized
repository where all SQL scripts used in an enterprise can
be obtained. (Spreadsheets are more easily obtainable in a
centralized manner.) The question is whether this technique
provides more or better annotations than the spreadsheet
mining approach presented here.

6. REFERENCES
[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and

J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD, pages 1247–1250, 2008.

[2] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on
the web. Proceedings of VLDB, (1):538–549, 2008.

[3] M. J. Cafarella, J. Madhavan, and A. Y. Halevy.
Web-scale extraction of structured data. SIGMOD
Record, pages 55–61, 2008.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In
Proceedings of ICDE, page 5, 2006.

[5] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang. A
hybrid machine-crowdsourcing system for matching web
tables. In Proceedings of ICDE, pages 976–987, 2014.

[6] R. Pimplikar and S. Sarawagi. Answering table queries
on the web using column keywords. Proceedings of the
VLDB Endowment, 5(10):908–919, 2012.

[7] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge unifying wordnet and
wikipedia. In WWW, pages 697–706, 2007.

[8] P. Venetis, A. Halevy, J. Madhavan, M. Paşca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. Proceedings of VLDB,
(9):528–538, 2011.

[9] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
SIGMOD, pages 481–492, 2012.

1939

	Introduction
	Related Work
	System Architecture
	Spreadsheet Discovery
	Spreadsheet Processing
	Table extraction from spreadsheets
	An inverted value index for efficient processing

	Column Annotation
	A regression model to rank annotations
	Experimental evaluation

	Demonstration Details
	Conclusion and Future Work
	References

